Skip to main content
Log in

Experiments on magnetization in superfluid3He

  • Published:
Journal of Low Temperature Physics Aims and scope Submit manuscript

Abstract

The results of a number of experiments on the dynamic and static magnetic properties of superfluids3He-A and3He-B are presented as well as a description of the 160-MHz rf-biased SQUID system used to make the magnetic flux measurements. Properties of both A and B phases were studied in both a rectangular cavity, a quasiideal geometry for3He-A, and in a stack of parallel plates, a quasiideal geometry for3He-B. The following results are presented: (1) Systematic studies of the properties of the “wall-pinned” magnetization ringing mode in3He-B, including the zero time frequency, which shows a discrepancy with theory, and the relaxation, which tends to confirm the essence of the theoretical ideas; also included are a variety of data on the effect of the finite size of the magnetic field change and the “biasing” field. (2) A complicated propagating magnetic disturbance has been observed using a novel method and systematics of its properties are studied. (3) The linear ringing frequencies of the B and A phases at a pressure of 27.0 bar in the parallel plate geometry have been studied with a result consistent with the assignment of the ABM state to3He-A and the BW state to3He-B. (4) Nonlinear ringing has been studied in both A and B phases in both geometries for both the oscillatory and driven modes. In the limit 1-T/T c → 0 we find 2πf R ΔH → 2 for both phases in both geometries. Although the general character of ringing frequencyf R as a function ofΔH follows the theory, there are substantial quantitative discrepancies which cannot be explained by relaxation. Relaxation has been observed and our results have been discussed by Ambegaokar and Levy. (5) New measurements of static magnetism in the parallel plate geometry show agreement with all earlier work, indicating that the discrepancy between static and dynamic measurements cannot be explained by a geometrical effect. An experimental manifestation of the AB interfacial energy enabled an estimate of the coherence length to be made which is in qualitative agreement with theory.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. J. Leggett,Rev. Mod. Phys. 47, 331 (1975).

    Google Scholar 

  2. J. C. Wheatley,Rev. Mod. Phys. 47, 415 (1975).

    Google Scholar 

  3. D. D. Osheroff, W. J. Gully, R. C. Richardson, and D. M. Lee,Phys. Rev. Lett. 29, 920 (1972).

    Google Scholar 

  4. R. A. Webb, R. L. Kleinberg, and J. C. Wheatley,Phys. Lett. 48A, 421 (1974).

    Google Scholar 

  5. R. A. Webb, R. L. Kleinberg, and J. C. Wheatley,Phys. Rev. Lett. 33, 145 (1974).

    Google Scholar 

  6. D. D. Osheroff,Phys. Rev. Lett. 33, 1009 (1974).

    Google Scholar 

  7. A. I. Ahonen, T. A. Alvesalo, M. T. Haikala, M. Krusius, and M. A. Paalaven,Phys. Lett. 51A, 279 (1975).

    Google Scholar 

  8. H. M. Bozler, M. E. R. Bennier, W. J. Gully, R. C. Richardson, and D. M. Lee,Phys. Rev. Lett. 32, 875 (1974).

    Google Scholar 

  9. A. I. Ahonen, M. T. Haikala, M. Krusius, and O. V. Lounasmaa,Phys. Rev. Lett. 33, 1595 (1974).

    Google Scholar 

  10. D. D. Osheroff and W. F. Brinkman,Phys. Rev. Lett. 32, 584 (1974).

    Google Scholar 

  11. K. Maki and T. Tsuneto,Prog. Theor. Phys. 52, 773 (1974).

    Google Scholar 

  12. K. Maki and C.-R. Hu,J. Low Temp. Phys. 18, 377 (1974).

    Google Scholar 

  13. K. Maki and C.-R. Hu,J. Low Temp. Phys. 19, 259 (1975).

    Google Scholar 

  14. W. F. Brinkman,Phys. Lett. 49A, 411 (1974).

    Google Scholar 

  15. A. J. Leggett,Phys. Rev. Lett. 35, 1178 (1975).

    Google Scholar 

  16. K. Maki and H. Ebisawa,Phys. Rev. B 13, 4845 (1976).

    Google Scholar 

  17. R. A. Webb, R. E. Sager, and J. C. Wheatley,Phys. Rev. Lett. 35, 1164 (1975).

    Google Scholar 

  18. R. A. Webb, R. E. Sager, and J. C. Wheatley,Phys. Lett. 54A, 243 (1975).

    Google Scholar 

  19. J. C. Wheatley, R. E. Rapp, and R. T. Johnson,J. Low Temp. Phys. 4, 1 (1970).

    Google Scholar 

  20. J. E. Zimmerman, P. Thiene, and J. T. Harding,J. Appl. Phys. 41, 1572 (1970).

    Google Scholar 

  21. J. E. Zimmerman and N. V. Frederick,Appl. Phys. Lett. 19, 16 (1971).

    Google Scholar 

  22. A. Vincent, A. E. J. Cukanskas, and B. S. Deaver, Jr., preprint.

  23. R. A. Kamper, J. D. Siegwarth, R. Radebaugh, and J. E. Zimmerman,IEEE Proc. Lett. 59, 1368 (1971).

    Google Scholar 

  24. R. P. Giffard, R. A. Webb, and J. C. Wheatley,J. Low Temp. Phys. 6, 533 (1971).

    Google Scholar 

  25. I. Fomin and M. Vuorio,J. Low Temp. Phys. 21, 271 (1975).

    Google Scholar 

  26. A. J. Leggett and S. Takagi,Phys. Rev. Lett. 34, 1424 (1975).

    Google Scholar 

  27. P. Bhattacharyya, C. J. Pethick, and H. Smith,Phys. Rev. Lett. 35, 473 (1975).

    Google Scholar 

  28. W. F. Brinkman and H. Smith,Phys. Lett. 53A, 43 (1975).

    Google Scholar 

  29. D. D. Osheroff and L. Corruccini, inProc. 14th Int. Conf. Low Temp. Phys., M. Krusius and M. Vuorio, eds. (North-Holland, Amsterdam, 1975), Vol. 1, p. 100.

    Google Scholar 

  30. D. N. Paulson, R. L. Kleinberg, and J. C. Wheatley,J. Low Temp. Phys. 23, 725 (1976).

    Google Scholar 

  31. D. N. Paulson, M. Krusius, and J. C. Wheatley,Phys. Rev. Lett. 36, 1322 (1976).

    Google Scholar 

  32. W. F. Brinkman, H. Smith, D. D. Osheroff, and E. I. Blount,Phys. Rev. Lett. 33, 624 (1974).

    Google Scholar 

  33. D. D. Osheroff, S. Engelsberg, W. F. Brinkman, and L. R. Corruccini,Phys. Rev. Lett. 34, 190 (1975).

    Google Scholar 

  34. R. C. Richardson, inProc. 14th Int. Conf. Low Temp. Phys., M. Krusius and M. Vuorio, eds. (North-Holland, Amsterdam, 1975), Vol. 5, p. 69.

    Google Scholar 

  35. K. Maki,Phys. Rev. B 11, 4264 (1975).

    Google Scholar 

  36. K. Maki and H. Ebisawa,J. Low Temp. Phys. 23, 351 (1976).

    Google Scholar 

  37. L. R. Corruccini and D. D. Osheroff,Phys. Rev. Lett. 34, 564 (1975).

    Google Scholar 

  38. M. Vuorio,J. Phys. C 9, L267 (1976).

  39. R. A. Webb, R. E. Sager, and J. C. Wheatley,Phys. Rev. Lett. 35, 615 (1975).

    Google Scholar 

  40. B. D. Josephson,Adv. Phys. 14, 419 (1965).

    Google Scholar 

  41. R. A. Webb, R. E. Sager, and J. C. Wheatley,Phys. Rev. Lett. 35, 1010 (1975).

    Google Scholar 

  42. N. D. Mermin and T.-L. Ho,Phys. Rev. Lett. 36, 597 (1976).

    Google Scholar 

  43. V. Ambegaokar and M. Levy,Phys. Rev. B 13, 1967 (1976).

    Google Scholar 

  44. A. J. Leggett and S. Takagai,Phys. Rev. Lett. 36, 1379 (1976).

    Google Scholar 

  45. T. Soda, Spin Relaxation Effects in Nonlinear Parallel Ringing of Magnetization in Superfluid3He, preprint.

  46. D. N. Paulson, R. T. Johnson, and J. C. Wheatley,Phys. Rev. Lett. 31, 746 (1973).

    Google Scholar 

  47. D. N. Paulson, H. Kojima, and J. C. Wheatley,Phys. Rev. Lett. 32, 1098 (1974).

    Google Scholar 

  48. A. J. Leggett, private communication.

  49. D. D. Osheroff and M. C. Cross, reported at Washington meeting of APS, 1976.

Download references

Author information

Authors and Affiliations

Authors

Additional information

Work supported by U.S. ERDA under contract number E(04-3)-34, P.A. 143.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Webb, R.A., Sager, R.E. & Wheatley, J.C. Experiments on magnetization in superfluid3He. J Low Temp Phys 26, 439–481 (1977). https://doi.org/10.1007/BF00655421

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00655421

Keywords

Navigation