Skip to main content
Log in

Radiation-stimulated superconductivity

  • Published:
Journal of Low Temperature Physics Aims and scope Submit manuscript

Abstract

Eliashberg has predicted that absorption of microwaves in a superconducting film leads to an increase of the energy gap by creating a nonequilibrium quasiparticle distribution. The frequency has to exceed the inverse relaxation time for inelastic scattering. In the present paper measurements are reported of the critical current of long, narrow, superconducting thin-film strips of aluminum subjected to high-frequency radiation (10 MHz–10 GHz). Above a critical frequency of about 200 MHz considerable enhancement of critical current and critical temperature is observed. Analysis of the results is performed by taking the critical current for a measure of the energy gap. The results are in reasonable agreement with Eliashberg's theory. As predicted, the transition between the superconducting and the normal states becomes of first order. The experimental results on critical current enhancement of micro-bridges (Dayem-Wyatt effect) can be explained consistently with gap enhancement.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. P. W. Anderson and A. H. Dayem,Phys. Rev. Lett. 13, 195 (1964).

    Google Scholar 

  2. P. E. Gregers-Hansen, M. T. Levinsen, and G. Fog Pedersen,J. Low Temp. Phys. 7, 99 (1972).

    Google Scholar 

  3. A. F. G. Wyatt, V. M. Dmitriev, W. S. Moore, and F. W. Sheard,Phys. Rev. Lett. 16, 1166 (1966).

    Google Scholar 

  4. A. H. Dayem and J. J. Wiegand,Phys. Rev. 155, 419 (1967).

    Google Scholar 

  5. A. F. G. Wyatt and D. H. Evans,Physica 55, 288 (1971).

    Google Scholar 

  6. Yu. I. Latyshev and F. Ya. Nad',Sov. Phys.—JETP Lett. 19, 380 (1974).

    Google Scholar 

  7. D. W. Jillie, J. Lukens, and Y. H. Kao,IEEE MAG 11, 671 (1975).

    Google Scholar 

  8. H. A. Notarys and J. E. Mercereau,Physica 55, 424 (1971).

    Google Scholar 

  9. H. A. Notarys, M. L. Yu, and J. E. Mercereau,Phys. Rev. Lett. 30, 743 (1973).

    Google Scholar 

  10. T. J. Tredwell and E. H. Jacobsen,Phys. Rev. B 13, 2931 (1976).

    Google Scholar 

  11. T. J. Tredwell and E. H. Jacobsen,Phys. Rev. Lett. 35, 244 (1975).

    Google Scholar 

  12. K. W. Shepard,Physica 55, 786 (1971).

    Google Scholar 

  13. W. H. Henkels, Ph.D. Thesis, Cornell (1974), and private communication.

  14. T. M. Klapwijk and J. E. Mooij,Physica 81B, 132 (1976).

    Google Scholar 

  15. T. K. Hunt and J. E. Mercereau,Phys. Rev. Lett. 30, 551 (1967).

    Google Scholar 

  16. P. V. Christiansen, E. B. Hansen, and G. J. Sjöström,J. Low Temp. Phys. 4, 349 (1971).

    Google Scholar 

  17. M. T. Levinsen,Rev. Phys. Appl. 9, 135 (1974).

    Google Scholar 

  18. P. E. Lindelof,Solid State Commun. 18, 283 (1976).

    Google Scholar 

  19. G. M. Eliashberg,Sov. Phys.—JETP Lett. 11, 114 (1970).

    Google Scholar 

  20. G. M. Eliashberg,Sov. Phys.—JETP 34, 668 (1972).

    Google Scholar 

  21. B. I. Ivlev and G. M. Eliashberg,Sov. Phys.—JETP Lett. 13, 333 (1971).

    Google Scholar 

  22. B. I. Ivlev, S. G. Lisitsyn, and G. M. Eliashberg,J. Low Temp. Phys. 10, 449 (1973).

    Google Scholar 

  23. A. Schmid, to be published.

  24. D. Saint James, G. Sarma, and E. J. Thomas,Type II Superconductivity (Pergamon, 1969), Chapter 5.

  25. P. G. de Gennes,Superconductivity of Metals and Alloys (Benjamin, New York, 1966).

    Google Scholar 

  26. M. Tinkham,Introduction to Superconductivity (McGraw-Hill, New York, 1975).

    Google Scholar 

  27. T. K. Hunt,Phys. Rev. 151, 325 (1966).

    Google Scholar 

  28. W. J. Skocpol, Ph.D. Thesis, Harvard (1974).

  29. V. P. Andratskii, L. M. Grundel, V. N. Gubankov, and N. B. Pavlov,Sov. Phys.—JETP 38, 794 (1974).

    Google Scholar 

  30. W. J. Skocpol, M. R. Beasley, and M. Tinkham,J. Appl. Phys. 45, 4054 (1974).

    Google Scholar 

  31. F. R. Fickett,Cryogenics 11, 349 (1971).

    Google Scholar 

  32. T. M. Klapwijk and J. E. Mooij,Phys. Lett. 57A, 97 (1976).

    Google Scholar 

  33. NBS Technical Note 385.

  34. J. L. Levine and S. Y. Hsieh,Physica 55, 471 (1971).

    Google Scholar 

  35. T. M. Klapwijk and T. B. Veenstra,Phys. Lett. 47A, 351 (1974).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Klapwijk, T.M., van den Bergh, J.N. & Mooij, J.E. Radiation-stimulated superconductivity. J Low Temp Phys 26, 385–405 (1977). https://doi.org/10.1007/BF00655418

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00655418

Keywords

Navigation