Advertisement

Journal of Low Temperature Physics

, Volume 14, Issue 3–4, pp 365–371 | Cite as

Evidence of spin compensation in copper-iron alloys obtained from thermal conductivity measurements

  • R. G. Sharma
  • M. S. R. Chari
Article

Abstract

The formation of a spin-compensated state in extremely dilute Cu-Fe alloys in the liquid helium range has been recently discussed by us on the basis of our electrical resistivity measurements. Based upon our thermal conductivity measurements in the liquid helium range, the electronic Lorenz number for the same alloys containing 115 and 380 at. ppm iron are reported in this paper in their unannealed and annealed states. For the well-annealed alloys, where the effective iron concentrations are estimated to be 10 to 20 at. ppm, the electronic Lorenz number is found to be equal to the Sommerfeld value of 2.45×108 V 2 /K 2 , which is consistent with the concept of the spin-compensated state of these alloys.

Keywords

Iron Thermal Conductivity Helium Electrical Resistivity Magnetic Material 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    J. Kondo,Prog. Theor. Phys. 32, 37 (1964).Google Scholar
  2. 2.
    Y. Nagaoka,Phys. Rev. 138A, 1112 (1965).Google Scholar
  3. 3.
    A. A. Abrikosov,Physics 2, 5 (1965).Google Scholar
  4. 4.
    H. Suhl,Phys. Rev. 138A, 515 (1965);Physics 2, 39 (1965).Google Scholar
  5. 5.
    M. D. Daybell and W. A. Steyert,Phys. Rev. 167, 536 (1968).Google Scholar
  6. 6.
    A. J. Heeger,Solid State Phys. 23, 283 (1969).Google Scholar
  7. 7.
    J. E. Van Dam and G. J. Van den Berg,Phys. Stat. Sol. (a)3, 11 (1970).Google Scholar
  8. 8.
    R. G. Sharma and M. S. R. Chari, to be published inJ. Low. Temp. Phys. Google Scholar
  9. 9.
    J. T. Schriempf, A. I. Schindler, and D. L. Mills,Phys. Rev. 187, 959 (1969).Google Scholar
  10. 10.
    P. Lederer and D. L. Mills,Phys. Rev. 165, 837 (1968).Google Scholar
  11. 11.
    P. G. Klemens,Austral. J. Phys. 7, 57 (1954).Google Scholar
  12. 12.
    M. S. R. Chari and N. S. Natarajan,Phys. Stat. Sol. 29 K69 (1968).Google Scholar
  13. 13.
    P. L. Garbarino and C. A. Reynolds,Phys. Rev. B 4, 167 (1970).Google Scholar
  14. 14.
    W. R. G. Kemp, P. G. Klemens, R. J. Tainsh, and G. K. White,Acta Met. 5, 303 (1957).Google Scholar
  15. 15.
    M. A. Mitchell, P. G. Klemens, and C. A. Reynolds,Phys. Rev. B 3, 1119 (1971).Google Scholar
  16. 16.
    M. J. Rice and O. Bunce,Phys. Rev. B 3, 3833 (1970).Google Scholar
  17. 17.
    W. M. Star, P. C. M. Gubbens, and J. J. De Jong,Phys. Lett. 36A, 15 (1971).Google Scholar
  18. 18.
    D. Jha and M. H. Jericho,Phys. Rev. B 3, 147 (1970).Google Scholar
  19. 19.
    P. Monod,Phys. Rev. Letters 19, 1113 (1967).Google Scholar

Copyright information

© Plenum Publishing Corporation 1974

Authors and Affiliations

  • R. G. Sharma
    • 1
  • M. S. R. Chari
    • 1
  1. 1.National Physical LaboratoryNew DelhiIndia

Personalised recommendations