Skip to main content
Log in

Magnetic focusing of electrons and holes in bismuth

  • Published:
Journal of Low Temperature Physics Aims and scope Submit manuscript

Abstract

The electron and hole focusing effects in a magnetic field predicted by Pippard have been observed in bismuth. Two interlocking superconducting combs were evaporated onto the surface of a bismuth single crystal. The resistanceR(H) between the combs was measured with a superconducting voltmeter as a function of the magnetic fieldH applied parallel to the teeth of the combs. A local minimum in the resistance was observed when the magnetic field focused electrons or holes in extremal orbits between the teeth of different combs. A similar effect was observed when the combs were replaced by two parallel superconducting strips. In this case the dependence ofR(H) onH was in good qualitative agreement with the calculation of Gonçalves da Silva on a model whose Fermi surface was topologically equivalent to that of bismuth. From the values ofH at which the minima occurred we have deduced estimates forD xe andD ze , the diameters of the principal electron ellipsoid along the binary and trigonal axes. We findD xe =(0.94±0.03)×10−2 Å−1 andD ze =(1.35±0.04)×10−2 Å−1. These values lie somewhat below other values in the literature. This discrepancy may occur because each minimum inR(H) occurs at a field slightly belowH 0, whereH 0 is the field for which the diameter of the extremal electron trajectory is equal to the separation of the superconducting strips.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. F. M. Hawkins and A. B. Pippard,Proc. Camb. Phil. Soc. 61, 433 (1965).

    Google Scholar 

  2. C. Gonçalves da Silva, following paper, this issue.

  3. M. S. Khaikin,Zh. Eksperim. i Teor. Fiz. 41, 1773 (1961) [English transl:Soviet Phys.—JETP 14, 1260 (1962)].

    Google Scholar 

  4. V. F. Gantmakher, inProgress in Low Temperature Physics, C. J. Gorter, ed. (North-Holland, Amsterdam, 1966), Vol. 5, p. 181.

    Google Scholar 

  5. A. R. Mackintosh, inPhonons and Phonon Interactions, T. A. Bak, ed. (W. A. Benjamin, New York, 1964), p. 181.

    Google Scholar 

  6. J. Clarke,Phil. Mag. 13, 115 (1966).

    Google Scholar 

  7. G. I. Rochlin,Rev. Sci. Instr. 41, 73 (1970).

    Google Scholar 

  8. M. S. Dresselhaus, inPhysics of Semimetals and Narrow-Gap Semiconductors, D. L. Carter and R. T. Bate, eds. (Pergamon, New York, 1971).

    Google Scholar 

  9. A. P. Cracknell,Adv. Phys. 18, 681 (1969).

    Google Scholar 

  10. W. S. Boyle and G. E. Smith, inProgress in Semiconductors, Vol. 7, A. F. Gibson and R. E. Burgess, eds. (Wiley, New York, 1963).

    Google Scholar 

  11. B. Lax, J. G. Mavroides, H. J. Zeiger, and R. J. Keyes,Phys. Rev. Lett. 5, 241 (1960).

    Google Scholar 

  12. R. J. Dinger and A. W. Lawson,Phys. Rev. B 7, 5215 (1973); R. Herrmann, S. Hess, and H.-U. Müller,Phys. Stat. Sol. B 48, K151 (1971).

    Google Scholar 

  13. M. H. Cohen,Phys. Rev. 121, 387 (1961).

    Google Scholar 

  14. A. P. Korolyuk,Zh. Eksperim. i Teor. Fiz. 49, 1009 (1965) [English Transl:Soviet Phys.—JETP 22, 701 (1966)].

    Google Scholar 

  15. C. Gonçalves da Silva, private communication.

  16. R. Hartman,Phys. Rev. 181, 1070 (1969).

    Google Scholar 

  17. V. L. Newhouse, J. W. Bremer, and H. H. Edwards,Proc. IRE 48, 1395 (1960).

    Google Scholar 

  18. A. B. Pippard, J. G. Shepherd, and D. A. Tindall,Proc. Roy. Soc. (London)A324, 17 (1971).

    Google Scholar 

  19. A. F. Andreev,Zh. Eksperim. i Teor. Fiz. 46, 1823 (1964) [English transl:Soviet Phys.—JETP 19, 1228 (1964)].

    Google Scholar 

  20. J. Clarke,Phys. Rev. Lett. 28, 1363 (1972); M. Tinkham and J. Clarke,Phys. Rev. Lett. 28, 1366 (1972); M. Tinkham,Phys. Rev. B 6, 1747 (1972); J. Clarke and J. L. Paterson, to be published inJ. Low Temp. Phys.

    Google Scholar 

  21. R. N. Brown, J. G. Mavroides, and B. Lax,Phys. Rev. 129, 2055 (1963).

    Google Scholar 

  22. M. Maltz and M. S. Dresselhaus,Phys. Rev. B 2, 2877 (1970).

    Google Scholar 

  23. R. N. Bhargava,Phys. Rev. 156, 785 (1967).

    Google Scholar 

  24. I. M. Lifshitz and A. V. Pogorelov,Dokl. Akad. Nauk SSR 96, 1143 (1954).

    Google Scholar 

  25. F. M. Mueller,Phys. Rev. 148, 636 (1966).

    Google Scholar 

  26. D. H. Reneker,Phys. Rev. 115, 303 (1959).

    Google Scholar 

  27. M. S. Khaikin and V. S. Edelman,Zh. Eksperim. i Teor. Fiz. 47, 878 (1964) [English transl:Soviet Phys.—JETP 20, 587 (1965)].

    Google Scholar 

  28. R. Herrmann, S. Hess, and H.-U. Müller,Phys. Stat. Sol. B 48, K151 (1971).

Download references

Author information

Authors and Affiliations

Authors

Additional information

Work supported by the U.S. Atomic Energy Commission.

Alfred P. Sloan Foundation Fellow.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Clarke, J., Schwartzkopf, L.A. Magnetic focusing of electrons and holes in bismuth. J Low Temp Phys 16, 317–335 (1974). https://doi.org/10.1007/BF00655322

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00655322

Keywords

Navigation