Journal of Low Temperature Physics

, Volume 9, Issue 5–6, pp 519–524 | Cite as

Self-consistent equation of state of solid hydrogen

  • J. Amran Sussmann
  • Z. Friedman


In the calculation of the static and dynamic properties of quantum crystals, the usual substitution of the static interaction potential for the free energy is no longer justified. A self-consistent description of lattice vibrations is therefore necessary. Using the Debye approximation one gets a simple implicit equation for the zero-point vibration. For solid hydrogen this equation is shown to be physically meaningful and, notwithstanding integration difficulties, to be a convenient tool for testing the compatibility of different sets of experimental data and theoretical interaction-energy calculations. Compression data are shown to be compatible with inelastic neutron scattering and calorimetric data, and Trubitsyn's interaction potential is found to agree with the compression data over the entire experimental range.


Free Energy Interaction Potential Neutron Scattering Lattice Vibration Compression Data 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    M. Born, “Changement de Phases,” p. 334, Paris (1952).Google Scholar
  2. 2.
    C. Domb, “Changement de Phases,” p. 338, Paris (1952).Google Scholar
  3. 3.
    D. J. Hooton,Phil. Mag. 46, 433 (1955).Google Scholar
  4. 4.
    C. Domb and J. S. Dugdale, inProgress in Low Temperature Physics, C. J. Gorter, ed. (North Holland, Amsterdam, 1967), Vol. 2, p. 338.Google Scholar
  5. 5.
    J. S. Dugdale and D. K. C. MacDonald,Phil. Mag. 45, 811 (1954).Google Scholar
  6. 6.
    M. E. Fisher and I. J. Zucker,Proc. Cambridge Phil. Soc. 57, 107 (1961).Google Scholar
  7. 7.
    R. W. Hill and O. V. Lounasmaa,Phil. Mag. 4, 785 (1959).Google Scholar
  8. 8.
    C. Ahlers,J. Chem. Phys. 41, 86 (1964).Google Scholar
  9. 9.
    R. J. Roberts and J. G. Daunt,J. Low Temp. Phys. 6, 97 (1972).Google Scholar
  10. 10.
    J. W. Stewart,J. Phys. Chem. Solids 1, 146 (1956).Google Scholar
  11. 11.
    P. A. Bezuglyi and R. Kh. Minyataev,Soviet Phys.—Solid State 9, 2854 (1968).Google Scholar
  12. 12.
    N. Nielsen and H. Bjerrum Møller,Phys. Rev. B3, 4383 (1971).Google Scholar
  13. 13.
    J. W. Stewart, private communication.Google Scholar
  14. 14.
    V. P. Trubitsyn,Soviet Phys.—Solid State 7, 2708, 2779 (1966).Google Scholar
  15. 15.
    V. Magnasco and G. F. Musso,J. Chem. Phys. 47, 1723, 4617, 4629 (1967).Google Scholar

Copyright information

© Plenum Publishing Corporation 1972

Authors and Affiliations

  • J. Amran Sussmann
    • 1
  • Z. Friedman
    • 1
  1. 1.Department of Theoretical Physics and Applied MathematicsSoreq Nuclear Research CentreYavneIsrael

Personalised recommendations