Journal of Low Temperature Physics

, Volume 22, Issue 1–2, pp 105–119 | Cite as

Effect of spin-orbit interaction on the Knight shift of normal and superconducting small particles

  • Hiroyuki Shiba


The temperature dependence of the Knight shift is studied for normal as well as superconducting small particles. We take into account the discreteness of the energy levels and the spin-orbit coupling due to the particle surface. The theory is capable of explaining the size and temperature dependence of experimental data on Cu and superconducting Sn particles. The magnitude of the spin-orbit interaction is estimated for these particles by comparing the experimental results with the theory.


Experimental Data Energy Level Small Particle Magnetic Material Particle Surface 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    R. Kubo,J. Phys. Soc. Japan 17, 975 (1962).Google Scholar
  2. 2.
    C. Taupin,J. Phys. Chem. Solids 28, 41 (1967).Google Scholar
  3. 3.
    S. Kobayashi, T. Takahashi, and W. Sasaki,J. Phys. Soc. Japan 32, 1234 (1972).Google Scholar
  4. 4.
    P. Yee, thesis, University of California, Berkeley (1973); P. Yee and W. D. Knight,Phys. Rev. B 11, 3261 (1975).Google Scholar
  5. 5.
    S. Kobayashi, T. Takahashi, and W. Sasaki,J. Phys. Soc. Japan 36, 714 (1974);38, 599 (1975).Google Scholar
  6. 6.
    M. Ido and R. Hoshino,J. Phys. Soc. Japan 38, 898 (1975).Google Scholar
  7. 7.
    R. A. Ferrel,Phys. Rev. Lett. 3, 262 (1959).Google Scholar
  8. 7a.
    P. W. Anderson,Phys. Rev. Lett. 3, 325 (1959).Google Scholar
  9. 8.
    A. A. Abrikosov and L. P. Gor'kov,Sov. Phys.—JETP 15, 752 (1962).Google Scholar
  10. 9.
    R. Denton, B. Mühlschlegel, and D. Scalapino,Phys. Rev. B 7, 3589 (1973).Google Scholar
  11. 10.
    F. J. Dyson,J. Math. Phys. 3, 140, 157, 166 (1962); M. L. Mehta,Random Matrices and the Statistical Theory of Energy Levels (Academic, New York, 1967).Google Scholar
  12. 11.
    B. Mühlschlegel, D. Scalapino, and R. Denton,Phys. Rev. B 6, 1767 (1972).Google Scholar
  13. 12.
    B. Mühlschlegel,J. Math. Phys. 3, 522 (1962).Google Scholar
  14. 13.
    K. Maki,Superconductivity, Vol. 2, R. D. Parks, ed. (Marcel Dekker, New York, 1969), p. 1035.Google Scholar
  15. 14.
    K. Yosida,Phys. Rev. 110, 769 (1958).Google Scholar
  16. 15.
    A. Kawabata,J. Phys. Soc. Japan 29, 902 (1970).Google Scholar
  17. 16.
    S. Schultz, G. Dunifer, and C. Latham,Phys. Lett. 23, 192 (1966).Google Scholar

Copyright information

© Plenum Publishing Corporation 1976

Authors and Affiliations

  • Hiroyuki Shiba
    • 1
  1. 1.Institute for Solid State PhysicsUniversity of TokyoRoppongi, TokyoJapan

Personalised recommendations