Skip to main content
Log in

Correlation between anisotropy in the normal-state mass renormalization and anisotropy in the superconducting energy gap for zinc

  • Published:
Journal of Low Temperature Physics Aims and scope Submit manuscript

Abstract

A nonlocal pseudopotential model for the Fermi surface and band structure of zinc together with the cyclotron resonance data is used to calculate the orbital average of the normal-state mass renormalization λ iCR for numerous cyclotron orbits on the Fermi surface of zinc. We find that the mass renormalization λ k is constant for each sheet of the Fermi surface but that it varies from sheet to sheet. Using the Eliashberg equation, this anisotropy in λ k is correlated to anisotropy in the superconducting energy gap Δ k . For zinc we predict three distinct energy gaps, in the ratio of 2.30:1.76:1.00, corresponding respectively to the lens, the monster, and the cap sheets of the Fermi surface. Experimental evidence for this anisotropy in Δ k is provided by various measurements of the electronic properties in the superconducting state such as the low-temperature specific heat, microwave absorption, ultrasonic attenuation, effect of alloying on the critical temperature, and the temperature dependence of the critical field. We show that the results of these experiments are consistent with our predictions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. Bardeen, L. N. Cooper, and J. R. Schrieffer,Phys. Rev. 108, 1175 (1957).

    Google Scholar 

  2. R. W. Morse, T. Olsen, and J. D. Gavenda,Phys. Rev. Letters 3, 15 (1959);3, 193 (1959).

    Google Scholar 

  3. D. H. Douglass and L. M. Falicov, inProgress in Low Temperature Physics, C. J. Gorter, ed. (North-Holland, Amsterdam, 1964), Vol. IV, p. 97.

    Google Scholar 

  4. D. Nowak and M. J. G. Lee,Phys. Rev. Letters 28, 1201 (1972); D. Nowak, to be published inPhys. Rev.

    Google Scholar 

  5. A. J. Bennett,Phys. Rev. 140, A 1902 (1965);153, 482 (1967).

  6. J. F. Balsley and J. C. Swihart, inProceedings of Low Temperature Physics Conference, E. Kanda, ed. (Academic Press of Japan, Tokyo, 1970), Vo. 12, p. 303.

    Google Scholar 

  7. P. T. Truant and J. P. Carbotte,Solid State Commun. 9, 1621 (1971).

    Google Scholar 

  8. C. R. Leavens and J. P. Carbotte,Solid State Commun. 9, 75 (1971);Can. J. Phys. 49, 724 (1971);Ann. Phys. 70, 338 (1972).

    Google Scholar 

  9. D. Markowitz and L. P. Kadanoff,Phys. Rev. 131, 563 (1963).

    Google Scholar 

  10. S. Rudin and R. W. Stark, to be published.

  11. R. W. Stark and L. M. Falicov,Phys. Rev. Letters 19, 795 (1967).

    Google Scholar 

  12. R. W. Stark and S. Auluck, to be published.

  13. M. P. Shaw, P. I. Sampath, and T. G. Eck,Phys. Rev. 142, 399 (1966).

    Google Scholar 

  14. J. J. Sabo,Phys. Rev. B1, 1479 (1970).

    Google Scholar 

  15. D. Pines and P. Nozieres,The Theory of Quantum Liquids (W. A. Benjamin, New York, 1966), Vol. 1; J. W. Wilkins,Lectures on Observables Many-Body Effects in Metals, (Nordita, Copenhagen, 1968, unpublished).

    Google Scholar 

  16. See, for example, M. J. G. Lee,Phys. Rev. B2, 250 (1970), and references cited therein.

    Google Scholar 

  17. R. W. Stark and S. Auluck, to be published.

  18. W. L. McMillan,Phys. Rev. 167, 331 (1968).

    Google Scholar 

  19. P. B. Allen and M. L. Cohen,Phys. Rev. 187, 525 (1969), and references cited therein.

    Google Scholar 

  20. J. W. Garland, K. H. Bennemann, and F. M. Mueller,Phys. Rev. Letters 21, 1315 (1969).

    Google Scholar 

  21. E. Duclas-Soares and J. D. N. Cheeke, inProceedings of the Low Temperature Physics Conference, E. Kanda, ed. (Academic Press of Japan, Tokyo, 1970), Vol. 12, p. 305.

    Google Scholar 

  22. J. B. Evans, M. P. Garfunkel, and D. A. Hays,Phys. Rev. B1, 3629 (1970).

    Google Scholar 

  23. M. J. Lea, J. D. Llewellyn, D. R. Peck, and E. R. Dobbs, inProceedings of the Low Temperature Physics Conference, Vol. 11 (1969), p. 733; M. J. Lea and E. R. Dobbs,Phys. Letters 27A, 556 (1968).

  24. D. Farrell, J. G. Park, and B. R. Coles,Phys. Rev. Letters 13, 328 (1964); G. Boato, G. Gallinaro, and C. Rizzuto,Phys. Rev. 148, 353 (1966).

    Google Scholar 

  25. R. E. Fassnacht and J. R. Dillinger,Phys. Rev. 164, 565 (1967).

    Google Scholar 

  26. D. U. Gubser,Phys. Rev. B6, 827 (1972); D. U. Gubser and J. E. Cox, unpublished.

    Google Scholar 

  27. J. R. Clem,Ann. Phys. 40, 268 (1966).

    Google Scholar 

  28. R. W. Stark, private communication.

  29. D. A. Hays,Phys. Rev. B1, 3631 (1970).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Research supported by the National Science Foundation and the Advanced Research Project Agency. Submitted to the Department of Physics, The University of Chicago, in partial fulfillment of the requirements for the Ph.D. degree.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Auluck, S. Correlation between anisotropy in the normal-state mass renormalization and anisotropy in the superconducting energy gap for zinc. J Low Temp Phys 12, 601–629 (1973). https://doi.org/10.1007/BF00654961

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00654961

Keywords

Navigation