Skip to main content
Log in

Gibbs free-energy barrier against irreversible magnetic flux entry into a superconductor

  • Published:
Journal of Low Temperature Physics Aims and scope Submit manuscript

Abstract

We have calculated the Gibbs free-energy barrier against irreversible magnetic flux entry into a superconductor for a long cylinder with elliptical cross section which approximates a long, flat strip. Our model is simplified to the two-dimensional case by assuming magnetic flux to enter in the form of a long, narrow, normal domain parallel to the axis of the cylinder. The following four contributions to the Gibbs free energy have been taken into account: (1) loss of condensation energy and gain of magnetic field energy inside the superconductor, (2) magnetic field energy outside the superconductor, (3) energy of interaction of the domain with an applied magnetic field, and (4) energy of interaction with an applied electrical transport current. Because of the Gibbs free-energy barrier, the critical magnetic field for entry of magnetic flux can be enhanced considerably above that calculated using Silsbee's rule. This enhancement is found to be proportional to the square root of the width of the superconducting cylinder. Important consequences of this are the enhancement of the critical current in a superconducting strip in zero magnetic field at which electrical resistance starts to appear and a corresponding modification of Silsbee's rule. We have demonstrated these effects experimentally through measurements of the onset of the current-induced resistive state in a series of superconducting indium strips of different widths and thicknesses. The experimental results confirm the theoretical predictions. The Gibbs free-energy-barrier effect described here can be interpreted as a novel flux-pinning mechanism, which might be called edge pinning.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R. P. Huebener, R. T. Kampwirth, and J. R. Clem,J. Low Temp. Phys. 6, 275 (1972).

    Google Scholar 

  2. F. B. Silsbee,J. Wash. Acad. Sci. 6, 597 (1916).

    Google Scholar 

  3. R. P. Huebener and D. E. Gallus,Phys. Rev. B7, 4089 (1973).

    Google Scholar 

  4. J. R. Clem,Proceedings of the Thirteenth International Conference on Low Temperature Physics, Boulder, Colorado, August 21–25, 1972, to be published.

  5. P. G. de Gennes,Superconductivity of Metals and Alloys (W. A. Benjamin, New York, 1966), Chap. 3, p. 76.

    Google Scholar 

  6. A. B. Pippard,Classical Thermodynamics (Cambridge University Press, Cambridge, 1960), p. 24.

    Google Scholar 

  7. R. E. Glover, III, and H. T. Coffey,Rev. Mod. Phys. 36, 299 (1964).

    Google Scholar 

  8. E. H. Rhoderick and E. M. Wilson,Nature 194, 1167 (1962).

    Google Scholar 

  9. V. L. Newhouse,Applied Superconductivity (John Wiley and Sons, New York, 1964), p. 267.

    Google Scholar 

  10. G. W. Swan,J. Math. Phys. 9, 1308 (1968).

    Google Scholar 

  11. J. M. Daniels,Can. J. Phys. 47, 389 (1969).

    Google Scholar 

  12. D. C. Baird,Can. J. Phys. 42, 1682 (1964).

    Google Scholar 

  13. H. Kirchner,Phys. Stat. Solidi (a)4, 531 (1971).

    Google Scholar 

  14. R. Olafsson and J. F. Allen,J. Phys. F 2, 123 (1972).

    Google Scholar 

  15. H. Kirchner and A. Kiendl,Phys. Letters 39A, 293 (1972).

    Google Scholar 

  16. R. P. Huebener and R. T. Kampwirth,Solid State Commun. 10, 1289 (1972).

    Google Scholar 

  17. R. P. Huebener and R. T. Kampwirth,Proceedings of the 1972 Applied Superconductivity Conference, H. M. Long and W. F. Gauster, eds., IEEE Pub. No. 72CHO682-5-TABSC, p. 422.

  18. R. P. Huebener and R. T. Kampwirth,Phys. Stat. Solidi (a)13, 255 (1972).

    Google Scholar 

  19. B. L. Brandt, R. D. Parks, and R. D. Chaudhari,J. Low Temp. Phys. 4, 41 (1971).

    Google Scholar 

  20. P. R. Solomon and R. E. Harris,Proceedings of the Twelfth International Conference on Low Temperature Physics, Kyoto, Japan, September 4–10, 1970, E. Kanda, ed. (Academic Press of Japan, Tokyo, 1971), pp. 475 and 486.

    Google Scholar 

  21. F. London,Superfluids (John Wiley and Sons, New York, 1960), Vol. I.

    Google Scholar 

  22. H. Kirchner,Proceedings of the Thirteenth International Conference on Low Temperature Physics, Boulder, Colorado, August 21–25, 1972, to be published.

  23. Y. V. Sharvin,Zh. Eksperim. i Teor. Fiz. 33, 1341 (1957) [English transl.,Soviet Phys.—JETP 6, 1031 (1958)].

    Google Scholar 

  24. E. A. Lynton,Superconductivity (Methuen and Co., London, 1962), p. 5.

    Google Scholar 

  25. D. Shoenberg,Superconductivity (Cambridge University Press, Cambridge, 1962), p. 174.

    Google Scholar 

  26. H. London,Proc. Roy. Soc. (London)A152, 650 (1935).

    Google Scholar 

  27. A. B. Pippard,Phil. Mag. 41, 243 (1950).

    Google Scholar 

  28. C. J. Gorter,Physica 23, 45 (1957).

    Google Scholar 

  29. A. F. Andreev,Zh. Eksperim. i Teor. Fiz. 54, 1510 (1968) [English transl.,Soviet Phys.—JETP 27, 809 (1968)].

    Google Scholar 

  30. B. K. Mukherjee, H. D. Wiederick, and D. C. Baird,Proceedings of the Twelfth International Conference on Low Temperature Physics, Kyoto, Japan, September 4–10, 1970, E. Kanda, ed. (Academic Press of Japan, Tokyo, 1971), p. 479.

    Google Scholar 

  31. F. Rothen and W. Bestgen,Phys. Kond. Materie 12, 311 (1971).

    Google Scholar 

  32. H. D. Wiederick, D. C. Baird, and B. K. Mukherjee,Proceedings of the Thirteenth International Conference on Low Temperature Physics, Boulder, Colorado, August 21–25, 1972, to be published.

Download references

Author information

Authors and Affiliations

Authors

Additional information

Work performed in part in the Ames Laboratory and in part in the Argonne National Laboratory of the U.S. Atomic Energy Commission.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Clem, J.R., Huebener, R.P. & Gallus, D.E. Gibbs free-energy barrier against irreversible magnetic flux entry into a superconductor. J Low Temp Phys 12, 449–477 (1973). https://doi.org/10.1007/BF00654950

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00654950

Keywords

Navigation