Journal of Low Temperature Physics

, Volume 16, Issue 5–6, pp 533–555 | Cite as

Vortex nucleation in deformed rotating cylinders

  • Alexander L. Fetter


Superfluid states in a rotating elliptic cylinder are studied with semiclassical hydrodynamics. Two distinct approaches are used to obtain the critical angular velocity for the appearance of a vortex: (1) Equilibrium thermodynamics predicts that ω c1 increases monotonically with deformation at fixed cross-sectional area. (2) Predictions based on a critical slip speedv c at the walls depend on the detailed form ofv c ; the resulting ω c need not vary monotonically with deformation. The analogous situation in a rectangular cylinder is also discussed.


Vortex Angular Velocity Magnetic Material Equilibrium Thermodynamic Detailed Form 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    G. B. Hess and W. M. Fairbank,Phys. Rev. Letters 19, 216 (1967).Google Scholar
  2. 2.
    R. E. Packard and T. M. Sanders, Jr.,Phys. Rev. Letters 22, 823 (1969);Phys. Rev. A 6, 799 (1972).Google Scholar
  3. 3.
    P. J. Bendt and R. J. Donnelly,Phys. Rev. Letters 19, 214 (1967).Google Scholar
  4. 4.
    D. S. Shenk and J. B. Mehl,Phys. Rev. Letters 27, 1703 (1971).Google Scholar
  5. 5.
    R. G. Arkhipov,Zh. Eksperim. i Teor. Fiz. 33, 116 (1957) [English transl.,Soviet Phys.—JETP 6, 90 (1958)].Google Scholar
  6. 6.
    W. F. Vinen,Nature 181, 1524 (1958).Google Scholar
  7. 7.
    H. E. Hall,Advan. Phys. 9, 89 (1960).Google Scholar
  8. 8.
    G. B. Hess,Phys. Rev. 161, 189 (1967).Google Scholar
  9. 9.
    R. J. Donnelly and A. L. Fetter,Phys. Rev. Letters 17, 747 (1966).Google Scholar
  10. 10.
    A. L. Fetter,Phys. Rev. 153, 285 (1967).Google Scholar
  11. 11.
    J. D. Reppy,Phys. Rev. Letters 14, 733 (1965).Google Scholar
  12. 12.
    J. B. Mehl and W. Zimmermann, Jr.,Phys. Rev. 167, 214 (1967).Google Scholar
  13. 13.
    H. Kojima, W. Veith, S. J. Putterman, E. Guyon, and I. Rudnick,Phys. Rev. Letters 27, 714 (1971).Google Scholar
  14. 14.
    H. Lamb,Hydrodynamics (Dover, New York, 1945), 6th ed., pp. 86–88.Google Scholar
  15. 15.
    L. M. Milne-Thomson,Theoretical Hydrodynamics (Macmillan, New York, 1962), 4th ed., pp. 254–255, 259–260.Google Scholar
  16. 16.
    L. D. Landau and E. M. Lifshitz,Fluid Mechanics (Addison Wesley, Reading, Massachusetts, 1959), p. 26.Google Scholar
  17. 17.
    A. L. Fetter, Vortices and Ions in Helium, Section IIA, inThe Physics of Liquid and Solid Helium, K. H. Bennemann and J. B. Ketterson, eds. (Wiley, New York, to be published).Google Scholar
  18. 18.
    A. L. Fetter,Phys. Rev. 152, 183 (1966).Google Scholar
  19. 19.
    L. Onsager,Nuovo Cimento 6 (Suppl. 2), 249 (1949).Google Scholar
  20. 20.
    R. P. Feynman, inProgress in Low Temperature Physics, C. J. Gorter, ed. (North-Holland, Amsterdam, 1955), Vol. I, p. 17.Google Scholar
  21. 21.
    G. W. Rayfield and F. Reif,Phys. Rev. 136, A1194 (1964).Google Scholar
  22. 22.
    K. R. Atkins,Liquid Helium (Cambridge University Press, Cambridge, 1959), pp. 198–201.Google Scholar
  23. 23.
    F. London,Superfluids (Dover, New York, 1954), Vol. II, p. 150.Google Scholar
  24. 24.
    R. J. Donnelly,Phys. Rev. Letters 14, 939 (1965).Google Scholar
  25. 25.
    C. C. Lin,On the Motion of Vortices in Two Dimensions (University of Toronto Press, Toronto, 1943).Google Scholar
  26. 26.
    P. M. Morse and H. Feshbach,Methods of Theoretical Physics (McGraw-Hill, New York, 1953), Part II, pp. 1195–1206.Google Scholar
  27. 27.
    A. Sommerfeld,Mechanics of Deformable Bodies (Academic Press, New York, 1950), pp. 143–145, 361–362.Google Scholar
  28. 28.
    D. Stauffer and A. L. Fetter,Phys. Rev. 168, 156 (1968).Google Scholar
  29. 29.
    P. Dennery and A. Krzywicki,Mathematics for Physicists (Harper and Row, New York, 1967), Chapter IV.Google Scholar
  30. 30.
    H. B. Dwight,Tables of Integrals and Other Mathematical Data (Macmillan, New York, 1961), 4th ed., pp. 12–14.Google Scholar
  31. 31.
    M. Abramowitz and I. A. Stegun (eds.),Handbook of Mathematical Functions (U.S. GPO, Washington, D.C., 1964), Appl. Math. Ser., No. 55, Sec. 6.3.Google Scholar

Copyright information

© Plenum Publishing Corporation 1974

Authors and Affiliations

  • Alexander L. Fetter
    • 1
  1. 1.Institute of Theoretical Physics, Department of PhysicsStanford UniversityStanford

Personalised recommendations