Journal of Low Temperature Physics

, Volume 9, Issue 3–4, pp 203–218 | Cite as

Low-temperature thermal expansion of copper: Search for specimen-dependent effects

  • F. N. D. D. Periera
  • G. M. Graham


Five samples of copper have been intercompared in an optical lever dilatometer to ascertain if specimen-dependent effects exist in the thermal expansion of nominally pure copper at low temperatures (T<10 K). The intercomparison has been made using the static piezoelectric effect of a quartz crystal as a transfer standard. Efforts have been made to keep the internal systematic error to a minimum during the comparisons. The absolute systematic errors have been estimated by including a sample of the N.B.S. copper standard and a specimen previously measured by the University of Iowa group in the comparisons. The maximum disagreement with the latter is ∼ 10% nearT=6 K The internal error is expected to be much smaller than this. The results show that no two of the present specimens are in agreement within several times the scatter of the measurements, ∼ ± 2%. The largest change, ∼ 20%, was caused by annealing of very pure copper in an oxidizing atmosphere. The correlation of the results with residual resistivity ratio measurements and other factors suggests that an impurity-dislocation interaction may be the cause of anomalous expansion.


Thermal Expansion Systematic Error Quartz Crystal Pure Copper Ratio Measurement 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    G. K. White and J. G. Collins,J. Low Temp. Phys. 7, 43 (1972).Google Scholar
  2. 2.
    K. O. McLean, C. A. Swenson, and C. R. Case,J. Low Temp. Phys. 7, 77 (1972).Google Scholar
  3. 3.
    J. F. Kos, Ph.D. thesis, University of Ottawa, 1969; see also J. F. Kos and J. L. G. Lamarche,Can. J. Phys. 47, 2509 (1969).Google Scholar
  4. 4.
    F. N. D. D. Periera, C. H. Barnes, and G. M. Graham,J. Appl. Phys. 41, 5050 (1970).Google Scholar
  5. 5.
    G. M. Graham and F. N. D. D. Periera,J. Appl. Phys. 42, 3011 (1971).Google Scholar
  6. 6.
    F. N. D. D. Periera and G. M. Graham,A.I.P. Conference Proceedings No. 3, Thermal Expansion, 1971, G. M. Graham and H. E. Hagy, eds. (A.I.P., New York), p. 65.Google Scholar
  7. 7.
    G. T. Meaden,The Electrical Resistance of Metals (Plenum Press, New York, 1965), p. 113.Google Scholar
  8. 8.
    D. W. Bloom, D. H. Lowndes, Jr., and L. Finegold,Rev. Sci. Instr. 41, 690 (1970).Google Scholar
  9. 9.
    T. A. Hahn,J. Appl. Phys. 41, 5096 (1970).Google Scholar
  10. 10.
    N. Waterhouse,Can. J. Phys. 47, 1485 (1969).Google Scholar
  11. 11.
    J. G. Collins and G. K. White,Progress in Low Temperature Physics, C. J. Gorter, ed. (North Holland, Amsterdam, 1964), Vol. 4.Google Scholar
  12. 12.
    D. L. Martin,Phys. Rev. 14, 576 (1966).Google Scholar
  13. 13.
    D. F. Gibbons,J. Phys. Chem. Solids 11, 246 (1959).Google Scholar
  14. 14.
    G. Ahlers,Rev. Sci. Instr. 37, 477 (1966).Google Scholar
  15. 15.
    D. L. Martin,Can. J. Phys. 47, 1253 (1969).Google Scholar
  16. 16.
    D. L. Martin,Rev. Sci. Instr. 38, 1738 (1967).Google Scholar

Copyright information

© Plenum Publishing Corporation 1972

Authors and Affiliations

  • F. N. D. D. Periera
    • 1
  • G. M. Graham
    • 1
  1. 1.Department of PhysicsUniversity of TorontoTorontoCanada

Personalised recommendations