Advertisement

Journal of Low Temperature Physics

, Volume 25, Issue 1–2, pp 177–193 | Cite as

Superconducting and normal state properties of Li1+xTi2−xO4 spinel compounds. II. Low-temperature heat capacity

  • R. W. McCallum
  • D. C. Johnston
  • C. A. Luengo
  • M. B. Maple
Article

Abstract

Heat capacity data are reported which confirm as a bulk effect the previously reported superconductivity in LiTi 2 O 4 . These data also establish LiTi2O4 as a weak couplingd-band superconductor with superconducting state properties well described by the Bardeen—Cooper—Schrieffer theory of superconductivity. The properties of LiTi 2 O 4 are compared with those of other superconducting spinel compounds, and the composition dependence ofT c for Li 1+x Ti 2−x O 4 is discussed. The disappearance of superconductivity forx≳0.1 was found to be correlated with a rapid decrease in the normal-state linear heat capacity coefficient.

Keywords

Heat Capacity Normal State Magnetic Material Rapid Decrease Superconducting State 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    A. Deschanvres, B. Raveau, and Z. Sekkal,Mat. Res. Bull. 6, 699 (1971).Google Scholar
  2. 2.
    D. C. Johnston, H. Prakash, W. H. Zachariasen, and R. Viswanathan,Mat. Res. Bull. 8, 777 (1973).Google Scholar
  3. 3.
    D. C. Johnston, Ph.D. Dissertation, University of California—San Diego, La Jolla, California (March 1975), unpublished;Diss. Abs. Int. 35(11) (1975).Google Scholar
  4. 4.
    D. C. Johnston,J. Low Temp. Phys. 25, 145 (1976).Google Scholar
  5. 5.
    C. A. Luengo, Ph.D. Dissertation, Universidad Nacional de Cuyo, Argentina (1972).Google Scholar
  6. 6.
    E. S. R. Gopal,Specific Heat at Low Temperatures (Plenum Press, New York, 1966).Google Scholar
  7. 7.
    T. R. Sandin and P. H. Keesom,Phys. Rev. 177, 1370 (1969).Google Scholar
  8. 8.
    C. Schlenker, S. Lakkis, J. M. D. Coey, and M. Marezio,Phys. Rev. Lett. 32, 1318 (1974).Google Scholar
  9. 9.
    M. E. Sjöstrand and P. H. Keesom,Phys. Rev. B 7, 3558 (1973).Google Scholar
  10. 10.
    F. London,Superfluids, Vol. I (Dover, New York, 1961), p. 20.Google Scholar
  11. 11.
    J. Bardeen, L. N. Cooper, and J. R. Schrieffer,Phys. Rev. 108, 1175 (1957).Google Scholar
  12. 12.
    W. L. McMillan,Phys. Rev. 167, 331 (1968).Google Scholar
  13. 13.
    N. H. van Maaren, G. M. Schaeffer, and F. K. Lotgering,Phys. Lett. 25A, 238 (1967).Google Scholar
  14. 14.
    M. Robbins, R. H. Willens, and R. C. Miller,Solid State Comm. 5, 933 (1967).Google Scholar
  15. 15.
    G. M. Schaeffer and M. H. van Maaren, inProc. 11th Int. Conf. Low Temp. Phys. (Univ. St. Andrews Press, 1968), Vol. 2, p. 1033.Google Scholar
  16. 16.
    M. H. van Maaren, H. B. Harland, and E. E. Havinga,Solid State Comm. 8, 1933 (1970).Google Scholar

Copyright information

© Plenum Publishing Corporation 1976

Authors and Affiliations

  • R. W. McCallum
    • 1
  • D. C. Johnston
    • 1
  • C. A. Luengo
    • 1
  • M. B. Maple
    • 1
  1. 1.Institute for Pure and Applied Physical SciencesUniversity of CaliforniaSan Diego, La Jolla

Personalised recommendations