Skip to main content
Log in

Tunnel junction dc SQUID: Fabrication, operation, and performance

  • Published:
Journal of Low Temperature Physics Aims and scope Submit manuscript

Abstract

We describe the theory, fabrication, operation, and performance of a cylindrical dc SQUID made with shunted Nb-NbOx-Pb Josephson tunnel junctions. The SQUID is current-biased at a nonzero voltage, and modulated with a 100 kHz flux. The 100 kHz voltage developed across the SQUID is amplified by a cooled, resonantLC circuit that optimally couples the SQUID impedance to the input of a room-temperature FET preamplifier. The SQUID is operated in a flux-locked loop with a dynamic range in a 1-Hz bandwidth of ±3×106. The 3-dB rolloff frequency for the loop response is typicalty 2 kHz, and the slewing rate is generally 2×104 φ0 sec−1. A typical flux noise power spectrum for a SQUID at 4.2 K in a superconducting shield is presented. Above 2×10−2 Hz the spectrum is white and has an rms value of 3.5×10−5 φ0 Hz−1/2. The white noise is intrinsic to the sensor and is close to the theoretical limit set by Johnson noise in the shunts. At lower frequencies, the power spectrum is approximately 10−10 (1 Hz/f) φ 20 Hz−1, wheref is the frequency. This value is approximately two orders of magnitude greater than the calculated 1/f noise in the tunnel junctions. The factors contributing to the long-term drift of the SQUID are discussed. By regulating the temperature of the helium bath we have achieved a drift rate of 2×10−5 φ0 h−1 over a 20-h period. A detailed description is given of the coupling efficiency of various input coils wound on the SQUID. The effects of coupling between the input coil, the SQUID, and the feedback (modulation) coil are described, and measurements of the coupling parameters reported. The energy resolution of the SQUID with respect to a current in a 24-turn input coil is 7×10−30 J Hz−1 for frequencies at which the flux noise has a white power spectrum. In terms of energy resolution, the SQUID has a better performance in the 1/f noise region that that of any SQUID previously reported in the literature. The long-term drift over an extended period also represents the lowest value yet reported.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. B. D. Josephson,Phys. Lett. 1, 251 (1962);Adv. Phys. 14, 419 (1965).

    Google Scholar 

  2. R. C. Jaklevic, J. Lambe, A. H. Silver, and J. E. Mercereau,Phys. Rev. Lett. 12, 159 (1964).

    Google Scholar 

  3. J. E. Zimmerman and A. H. Silver,Phys. Rev. 141, 367 (1966).

    Google Scholar 

  4. M. R. Beasley and W. W. Webb, inProc. Symp. Physics of Superconducting Devices (Univ. of Virginia, Charlottesville, April 28–29, 1967), Vol. 1.

  5. P. L. Forgacs and A. Warnick,Rev. Sci. Inst. 38, 214 (1967).

    Google Scholar 

  6. J. Clarke,Phil. Mag. 13, 115 (1966).

    Google Scholar 

  7. J. E. Zimmerman, P. Thiene, and J. T. Harding,J. Appl. Phys. 41, 1572 (1970).

    Google Scholar 

  8. J. E. Mercereau,Rev. Phys. Appl. 5, 13 (1970); M. Nisenoff,Rev. Phys. Appl. 5, 21 (1970).

    Google Scholar 

  9. R. P. Giffard, R. A. Webb, and J. C. Wheatley,J. Low Temp. Phys. 6, 533 (1972).

    Google Scholar 

  10. J. Kurkijärvi,Phys. Rev. B 6, 832 (1972); J. Kurkijärvi and W. W. Webb, inProc. Appl. Superconductivities Conference, Annapolis (IEEE, New York, 1972), p. 581; J. Kurkijärvi,J. Appl. Phys. 44, 3729 (1973); L. D. Jackel and R. A. Buhrman,J. Low Temp. Phys. 19, 201 (1975).

    Google Scholar 

  11. J. Clarke,Proc. IEEE 61, 8 (1973).

    Google Scholar 

  12. P. K. Hansma, G. I. Rochlin, and J. N. Sweet,Phys. Rev. B 4, 3003 (1971).

    Google Scholar 

  13. J. E. Nordman,J. Appl. Phys. 40, 2111 (1969); J. E. Nordman and W. H. Keller,Phys. Lett. 36A, 52 (1971); L. O. Mullen and D. B. Sullivan,J. Appl. Phys. 40, 2115 (1969); R. Graeffe and T. Wiik,J. Appl. Phys. 42, 2146 (1971); K. Schwidtal,J. Appl. Phys. 43, 202 (1972); P. K. Hansma,J. Appl. Phys. 45, 1472 (1974); S. Owen and J. E. Nordman,IEEE Trans. Magn. MAG-11, 774 (1975).

    Google Scholar 

  14. V. Radhakrishnan and V. L. Newhouse,J. Appl. Phys. 42, 129 (1971).

    Google Scholar 

  15. A. Th. A. M. De Waele and R. De Bruyn Ouboter,Physica 41, 225 (1969).

    Google Scholar 

  16. M. Tinkham,Introduction to Superconductivity (McGraw-Hill, New York, 1975), p. 214.

    Google Scholar 

  17. R. A. Webb, R. P. Giffard, and J. C. Wheatley,J. Low Temp. Phys. 13, 383 (1973).

    Google Scholar 

  18. J. Clarke, W. M. Goubau, and M. B. Ketchen,IEEE Trans. Magn. MAG-11, 724 (1975);Appl. Phys. Lett. 27, 155 (1975); inProc. 14th Int. Conf. Low Temp. Phys. (Helsinki, Finland, 1975) (North-Holland, Amsterdam), Vol. 4, p. 214.

    Google Scholar 

  19. W. C. Stewart,Appl. Phys. Lett. 12, 277 (1968).

    Google Scholar 

  20. D. E. McCumber,J. Appl. Phys. 39, 3113 (1968).

    Google Scholar 

  21. J. Clarke and J. L. Paterson,Appl. Phys. Lett. 19, 469 (1971).

    Google Scholar 

  22. Y. H. Ivanchenko and L. A. Zil'berman,Zh. Eksp. Teor. Fiz. 55, 2395 (1968) [Soviet Phys.—JEPT 28, 1272 (1969)].

    Google Scholar 

  23. V. Ambegaokar and B. I. Halperin,Phys. Rev. Lett. 22, 1364 (1969).

    Google Scholar 

  24. A. N. Vystavkin, V. N. Gubankov, L. S. Kuzmin, K. K. Likharev, V. V. Migulin, and V. K. Semenov,Rev. Phys. Appl. 9, 79 (1974).

    Google Scholar 

  25. C. M. Falco, W. H. Parker, S. E. Trullinger, and P. K. Hansma,Phys. Rev. B 10, 1865 (1974).

    Google Scholar 

  26. M. D. Fiske,Rev. Mod. Phys. 36, 221 (1964).

    Google Scholar 

  27. A. Davidson, R. S. Newbower, and M. R. Beasley,Rev. Sci. Instr. 45, 838 (1974).

    Google Scholar 

  28. K. K. Likharev and V. K. Semenov,JETP Lett. 15, 442 (1972).

    Google Scholar 

  29. T. A. Fulton,IEEE Trans. Magn. MAG-11, 749 (1975).

    Google Scholar 

  30. J. Clarke and G. A. Hawkins,IEEE Trans. Magn. MAG-11, 724 (1975).

    Google Scholar 

  31. J. Clarke and R. F. Voss,Phys. Rev. Lett. 33, 24 (1974); R. F. Voss and J. Clarke,Phys. Rev. B 13, 556 (1976).

    Google Scholar 

  32. J. E. Zimmerman,J. Appl. Phys. 42, 4483 (1971).

    Google Scholar 

  33. J. M. Pierce, J. E. Opfer, and L. H. Rorden,IEEE Trans. Magn. MAG-10, 599 (1974).

    Google Scholar 

  34. J. H. Claassen,J. Appl. Phys. 46, 2268 (1975).

    Google Scholar 

  35. F. W. Grover,Inductance Calculations: Working Formulas and Tables (Dover, New York, 1962), pp. 142–150.

    Google Scholar 

  36. G. A. Hawkins and J. Clarke,J. Appl. Phys. 47, 1616 (1976).

    Google Scholar 

  37. T. D. Clark and L. D. Jackel,Rev. Sci. Instr. 46, 1249 (1975).

    Google Scholar 

  38. S. Letzter and N. Webster,IEEE Spectrum 7, 62 (1970).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Clarke, J., Goubau, W.M. & Ketchen, M.B. Tunnel junction dc SQUID: Fabrication, operation, and performance. J Low Temp Phys 25, 99–144 (1976). https://doi.org/10.1007/BF00654826

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00654826

Keywords

Navigation