Journal of Low Temperature Physics

, Volume 14, Issue 1–2, pp 53–71 | Cite as

The heat capacity of cerous magnesium nitrate and some related materials between 0.3 and 4 K

  • Jack H. Colwell


Cerous magnesium nitrate (CMN) is the preeminent electronic paramagnet in use in cryogenic physics for magnetic thermometry and adiabatic cooling. In demagnetization experiments designed to establish the thermodynamic temperature relations for CMN, an inexplicable heat capacity anomaly was found to occur above 20 mK and is shown here to persist to temperatures near 1 K. The anomaly is small but its presence interferes with and may cause errors in the analysis of thermometric data. We have measured the heat capacity of CMN, lanthanum magnesium nitrate (LMN), cerous nitrate hexahydrate, and a saturated aqueous solution of CMN (CMN liquor) in the temperature range 0.3–4 K in an attempt to find the source of the anomaly. The LMN heat capacity shows no anomaly and is used to approximate the lattice heat capacity of CMN. At low temperatures the CMN heat capacity, exclusive of the lattice contribution, is some 2 1/2 times larger than the magnetic heat capacity predicted by other investigations. At high temperatures an exponentially increasing heat capacity due to the first excited electronic level is observed and indicates a splitting which is in accurate agreement with the spectroscopic value. There is evidence that the lattice heat capacity in CMN is about 1% smaller than in LMN, which is probably the result of the crystal-field interaction with the electronic states of the cerous ions. The lattice terms and theT−2term of the magnetic heat capacity for cerous nitrate have been determined, the latter being 25 times larger than the predictedT−2term in CMN. The CMN liquor measurements indicate that this sample had probably become a glass on cooling. The lattice heat capacity is considerably larger than could be predicted from the separate components and there is no indication of the exponential term which would be observable if appreciable crystalline CMN were present. These measurements help to define the nature of the anomalous heat capacity and remove from consideration some possible explanations, but they do not reveal the cause of the anomaly.


Heat Capacity Nitrate Hexahydrate Thermodynamic Temperature Saturated Aqueous Solution Magnesium Nitrate 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    A. H. Cooke, H. J. Duffus, and W. P. Wolf,Phil. Mag. 44, 623 (1953).Google Scholar
  2. 2.
    J. M. Daniels and F. N. H. Robinson,Phil. Mag. 44, 630 (1953).Google Scholar
  3. 3.
    R. P. Hudson and R. S. Kaeser,Physics 3, 95 (1967).Google Scholar
  4. 4.
    K. W. Mess, J. Lubbers, L. Niesen, and W. J. Huiskamp,Physica 41, 260 (1969).Google Scholar
  5. 5.
    R. P. Hudson and E. R. Pfeiffer, inTemperature, Its Measurement and Control in Science and Industry, H. H. Plumb, ed. (Instrument Society of America, Pittsburgh, 1972), Vol. 4, Part 2, p. 1279.Google Scholar
  6. 6.
    R. P. Hudson,Cryogenics 9, 76 (1969).Google Scholar
  7. 7.
    P. H. E. Meijer and D. J. O'Keefe,Phys. Rev. B 1, 3786 (1970).Google Scholar
  8. 8.
    A. K. Cooke and H. J. Duffus,Proc. Roy. Soc. A229, 407 (1955); A. H. Cooke, H. Meyer, and W. P. Wolf,Proc. Roy. Soc. A237, 395 (1956).Google Scholar
  9. 9.
    P. H. E. Meijer, J. H. Colwell, and B. P. Shah,Am. J. Phys. 41, 332 (1973).Google Scholar
  10. 10.
    W. F. Giauque, R. A. Fisher, E. W. Hornung, and G. E. Brodale,J. Chem. Phys. 58, 2621 (1973).Google Scholar
  11. 11.
    J. Carp-Kappen, C. W. deBoom, H. J. M. Lebesque, and B. S. Blaisse,Physica 63, 297 (1973).Google Scholar
  12. 12.
    V. Narayanamurti and R. O. Pohl,Rev. Mod. Phys. 42, 201 (1970).Google Scholar
  13. 13.
    J. N. Friend and W. N. Wheat,J. Chem. Soc. (London)1935, 356 (1935).Google Scholar
  14. 14.
    J. H. Colwell,Rev. Sci. Instr. 40, 1182 (1969).Google Scholar
  15. 15.
    M. P. Bertinat, D. F. Brewer, and J. P. Harrison,J. Low Temp. Phys. 2, 157 (1970); G. J. Butterworth and M. P. Bertinat,Cryogenics 13, 282 (1973).Google Scholar
  16. 16.
    R. H. Sherman, S. G. Sydoriak, and T. R. Roberts,J. Res. Natl. Bur. Std. 68A, 579 (1964).Google Scholar
  17. 17.
    F. G. Brickwedde, H. Van Dijk, M. Durieux, J. R. Clement, and J. K. Logan, Natl. Bur. Std. (U.S.) Monograph No. 10, 1960.Google Scholar
  18. 18.
    D. W. Osborne, H. E. Flotow, and F. Schreiner,Rev. Sci. Instr. 38, 159 (1967).Google Scholar
  19. 19.
    E. F. Westrum, Jr., Chien Chow, D. W. Osborne, and H. E. Flotow,Cryogenics 7, 43 (1967).Google Scholar
  20. 20.
    T. A. Scott, J. deBruin, M. M. Giles, and C. Terry,J. Appl. Phys. 44, 1212 (1973).Google Scholar
  21. 21.
    C. A. Bailey,Phil. Mag. 4, 833 (1959);Proc. Phys. Soc. 83, 369 (1964).Google Scholar
  22. 22.
    H. Fenichel, private communication.Google Scholar
  23. 23.
    T. H. K. Barron and J. A. Morrison,Can. J. Phys. 35, 799 (1957).Google Scholar
  24. 24.
    D. Bloor and J. A. Campbell,J. Chem. Phys. 54, 3268 (1971).Google Scholar
  25. 25.
    D. B. Utton, private communication.Google Scholar
  26. 26.
    J. S. Smart,Effective Field Theories of Magnetism (Saunders, Philadelphia, 1966), Ch. 3 and 4.Google Scholar
  27. 27.
    J. H. Colwell,J. Chem. Phys. 51, 3820 (1969).Google Scholar
  28. 28.
    A. J. Leadbetter,Phys. Chem. Glasses 9, 1 (1968).Google Scholar
  29. 29.
    R. C. Zeller and R. O. Pohl,Phys. Rev. B 4, 2029 (1971).Google Scholar
  30. 30.
    R. A. Fisher, E. W. Hornung, G. E. Brodale, and W. F. Giauque,J. Chem. Phys. 58, 5584 (1973).Google Scholar

Copyright information

© Plenum Publishing Corporation 1974

Authors and Affiliations

  • Jack H. Colwell
    • 1
  1. 1.National Bureau of StandardsWashington, D.C.

Personalised recommendations