Skip to main content
Log in

Transport in the low-temperature limit of a Landau Fermi liquid

  • Published:
Journal of Low Temperature Physics Aims and scope Submit manuscript

Abstract

The Boltzmann equation for Landau quasiparticles is solved for T ∼ 0 by a specialization of a method discussed by Sykes and Brooker. The quasiparticle distribution function is expanded in Legendre polynomials, assuming a boundary condition which imposes axial symmetry, and even-order terms are assumed to relax together with relaxation time τ e , odd-order terms with relaxation time τ o . By letting wavelength λ → ∞, with τ finite, one obtains a first-sound solution, and by lettingT → 0, and then λ → ∞, one obtains a zero-sound solution. When these solutions are used to calculate the pressure, it is found that the first-sound solution is consistent with hydrodynamics, exhibiting viscosity η=μ s τ, while the zero-sound velocityc 1=[ϱ−1(B1+4/3μs)]1/2, so that phenomenologically zero-sound propagates like a longitudinal elastic wave in a glass. A higher zero-sound mode is also predicted, but is heavily damped. The heat flux is calculated and found to obey Vernotte's equation, which contains an intertial term, added to Fourier's law, that becomes significant asT → 0.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. L. D. Landau,Soviet Phys.—JETP 3, 920 (1957).

    Google Scholar 

  2. A. A. Abrikosov and I. M. Khalatnikov,Rep. Progr. Phys. 22, 329 (1959).

    Google Scholar 

  3. L. D. Landau,Soviet Phys.—JETP 5, 101 (1957).

    Google Scholar 

  4. L. P. Pitaevski,Soviet Phys.—Uspekhi 10, 100 (1967).

    Google Scholar 

  5. P. Vernotte,C. R. Acad. Sci. (Paris)252, 2190 (1961).

    Google Scholar 

  6. I. M. Khalatnikov and A. A. Abrikosov,Soviet Phys.—JETP 6, 84 (1958).

    Google Scholar 

  7. G. A. Brooker and J. Sykes,Ann. Phys. (N.Y.)61, 387 (1970).

    Google Scholar 

  8. G. A. Brooker,Phys. Lett. 13, 224 (1964).

    Google Scholar 

  9. R. G. Mortimer,J. Chem. Phys. 52, 4334 (1970).

    Google Scholar 

  10. G. A. Brooker and J. Sykes,Phys. Rev. Lett. 21, 279 (1968).

    Google Scholar 

  11. J. Sykes and G. A. Brooker,Ann. Phys. (N.Y.)56, 1 (1970).

    Google Scholar 

  12. H. Hajgard Jensen, H. Smith, and J. W. Wilkins,Phys. Lett. 27B, 532 (1968).

    Google Scholar 

  13. H. T. Tan and E. Feenberg,Phys. Rev. 178, 370 (1968).

    Google Scholar 

  14. A. Ford, F. Mohling, and J. C. Rainwater, inLow Temperature Physics—LT 13 (Proc. 13th Conf. on Low Temp. Phys.) (Plenum Press, New York, 1974), Vol. 1, p. 121.

    Google Scholar 

  15. D. Hone,Phys. Rev. 125, 1494 (1962).

    Google Scholar 

  16. D. T. Lawson, W. J. Gully, S. Goldstein, J. D. Reppy, D. M. Lee, and A. Richardson,J. Low Temp. Phys. 13, 503 (1973).

    Google Scholar 

  17. W. R. Abel, A. C. Anderson, and J. C. Wheatley,Phys. Rev. Lett. 17, 74 (1966).

    Google Scholar 

  18. G. A. Brooker,Proc. Phys. Soc. (London)90, 397 (1967).

    Google Scholar 

  19. A. C. Anderson, G. L. Salinger, and J. C. Wheatley,Phys. Rev. Lett. 6, 443 (1961).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nettleton, R.E. Transport in the low-temperature limit of a Landau Fermi liquid. J Low Temp Phys 22, 407–423 (1976). https://doi.org/10.1007/BF00654715

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00654715

Keywords

Navigation