Skip to main content
Log in

The Kapitza conductance of the (100) surface of copper

  • Published:
Journal of Low Temperature Physics Aims and scope Submit manuscript

Abstract

Measurements of the Kapitza conductance to liquid helium II across the (100) surface of single crystals of copper are presented. The temperature range of these measurements was 1.6–2.1 K. The sample surfaces were subjected to several different treatments. Some surfaces were cleaned by low-energy argon ion bombardment, annealed in an ultrahigh-vacuum system, and preserved under vacuum until purified liquid helium was admitted. Other surfaces were intentionally damaged by machining and/or exposure to the atmosphere. The conductance after these latter treatments was found to be about a factor of three higher than that of the more ideally cleaned and annealed surfaces, and a significant difference in the temperature dependence of the conductance was also observed. Conductances were reproducible for similarly treated surfaces and could be correlated with surface damage determined by x-ray diffraction. The relationship of these results to the numerous current theories of the Kapitza conductance is discussed. Conductance measurements of polycrystalline indium, which was used as a sealant, are presented.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. T. Folinsbee and A. C. Anderson,J. Low Temp. Phys. 17, 409 (1974).

    Google Scholar 

  2. J. D. N. Cheeke, B. Hebral, J. Richard, and R. R. Turkington,Phys. Rev. Lett. 32, 658 (1974).

    Google Scholar 

  3. F. Wagner, F. J. Kollarits, and M. Yaqub,Phys. Rev. Lett. 32, 1117 (1974).

    Google Scholar 

  4. J. L. Opsal and G. L. Pollack,Phys. Rev. A9, 2227 (1974).

    Google Scholar 

  5. T. J. Sluckin, G. A. Toombs, and F. W. Sheard,Solid State Commun. 14, 203 (1974).

    Google Scholar 

  6. J. P. Harrison,J. Low Temp. Phys. 17, 43 (1974).

    Google Scholar 

  7. W. M. Visscher, to be published.

  8. T. H. K. Frederking,Chem. Eng. Prog. Symp. Series 64, 21 (1968).

    Google Scholar 

  9. G. L. Pollack,Rev. Mod. Phys. 41, 48 (1969).

    Google Scholar 

  10. N. S. Snyder,Cryogenics 10, 89 (1970).

    Google Scholar 

  11. L. J. Challis,J. Phys. C: Sol. State Phys. 7, 481 (1974).

    Google Scholar 

  12. I. M. Khalatnikov,Zh. Eksp. Teor. Fiz. 22, 687 (1952).

    Google Scholar 

  13. K. Mittag,Cryogenics 13, 94 (1973).

    Google Scholar 

  14. A. E. Alnaimi and J. C. A. van der Sluijs,Cryogenics 13, 722 (1973).

    Google Scholar 

  15. C. J. Guo and H. J. Maris,Phys. Rev. A10, 960 (1974).

    Google Scholar 

  16. H. Kinder and W. Dietsche,Phys. Rev. Lett. 33, 578 (1974).

    Google Scholar 

  17. A. R. Long, R. A. Sherlock, and A. F. G. Wyatt,J. Low Temp. Phys. 15, 523 (1974).

    Google Scholar 

  18. T. J. B. Swanenburg and J. Wolter,Phys. Rev. Lett. 33, 882 (1974).

    Google Scholar 

  19. J. Buck, K. Lassmann, and W. Eisenmenger,Phys. Lett. 50A, 279 (1974).

    Google Scholar 

  20. A. R. Long,J. Low Temp. Phys. 17, 7 (1974).

    Google Scholar 

  21. K. Weiss,German Physical Society 1974 Spring Conf., Freudenstadt (see also Ref. 18).

  22. J. Lorenzen and L. M. Raff,J. Chem. Phys. 52, 1133 (1970).

    Google Scholar 

  23. J. D. N. Cheeke, B. Hebral, and C. Martinon,J. Physique 34, 257 (1973).

    Google Scholar 

  24. R. E. Peterson and A. C. Anderson,Solid State Commun. 10, 891 (1972).

    Google Scholar 

  25. G. Schmidt,Phys. Lett. 50A, 241 (1974).

    Google Scholar 

  26. J. D. N. Cheeke and B. Hebral,Phys. Lett. 40A, 301 (1972).

    Google Scholar 

  27. J. T. Folinshbee and A. C. Anderson,Phys. Rev. Lett. 31, 1580 (1973).

    Google Scholar 

  28. L. P. Mezhov-Deglin,Zh. Eksp. Teor. Fiz. 49, 66 (1965) [English transl.,Soviet Phys.—JETP 22, 47 (1965)].

    Google Scholar 

  29. J. S. Buechner and H. J. Maris,Phys. Rev. Lett. 34, 316 (1975).

    Google Scholar 

  30. R. E. Peterson and A. C. Anderson,J. Low Temp. Phys. 11, 639 (1973).

    Google Scholar 

  31. I. M. Khalatnikov and I. N. Adamenko,Zh. Eksp. Teor. Fiz. 63, 746 (1972) [English transl.,Soviet Phys.—JETP 36, 391 (1972)].

    Google Scholar 

  32. H. Haug and K. Weiss,Phys. Lett. 40A, 19 (1972).

    Google Scholar 

  33. G. M. McCracken,Vacuum 15, 433 (1965).

    Google Scholar 

  34. F. W. Young, Jr. and T. R. Wilson,Rev. Sci. Instrum. 32, 559 (1961).

    Google Scholar 

  35. J. J. Gniewek, A. F. Clark, and J. C. Moulder,Nat. Bur. Std. (U.S.) Tech. Note 321 (1965).

  36. R. W. Powers,Electrochem. Technol. 2, 274 (1964).

    Google Scholar 

  37. R. V. Stuart, inTrans. of the Eighth Natl. Vacuum Symp., L. E. Preuss, ed., (Pergamon Press, New York, 1961), Vol. 1, 252.

    Google Scholar 

  38. R. F. Steiger, J. M. Morabito, Jr., G. A. Somorjai, and R. H. Muller,Surface Sci. 14, 279 (1969).

    Google Scholar 

  39. T. N. Rhodin, Jr.,J. Amer. Chem. Soc. 72, 5102 (1950).

    Google Scholar 

  40. R. N. Lee and H. E. Farnsworth,Surface Sci. 3, 461 (1965).

    Google Scholar 

  41. J. D. N. Cheeke, B. Hebral, and J. Richard,J. Low Temp. Phys. 12, 359 (1973).

    Google Scholar 

  42. M. Avrami and J. B. Little,J. Appl. Phys. 13, 255 (1942).

    Google Scholar 

  43. A. F. Clark, V. A. Deason, J. G. Hust, and R. L. Powell,Nat. Bur. Std. (U.S.) Spec. Publ. 260–39 (1972).

  44. A. C. Anderson and W. J. Johnson,J. Low Temp. Phys. 7, 1 (1972).

    Google Scholar 

  45. U. R. Evans,The Corrosion and Oxidation of Metals: Scientific Principles and Practical Applications (Edward Arnold, London, 1960), Chap. II.

    Google Scholar 

  46. S. Andersson,Surface Sci. 18, 325 (1969).

    Google Scholar 

  47. K. Wey-Yen,Zh. Eksp. Teor. Fiz. 42, 921 (1962) [English transl.,Soviet Phys.—JETP 15, 635 (1962)].

    Google Scholar 

  48. L. J. Challis and J. D. N. Cheeke,Prog. Refrig. Sci. Tech. 1, 227 (1965).

    Google Scholar 

  49. J. D. N. Cheeke,Cryogenics 10, 463 (1970).

    Google Scholar 

  50. L. J. Challis, K. Dransfeld, and J. Wilks,Proc. Roy. Soc. A 260, 31 (1961).

    Google Scholar 

  51. K. R. Lawless,Rep. Prog. Phys. (GB) 37, 231 (1974).

    Google Scholar 

  52. J. I. Gittleman and S. Bozowski,Phys. Rev. 128, 646 (1962).

    Google Scholar 

  53. D. A. Neeper and J. R. Dillinger,Phys. Rev. 135, 1028 (1964).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Supported in part by the Office of Naval Research, Contract NAonr-22.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Snyder, N.S. The Kapitza conductance of the (100) surface of copper. J Low Temp Phys 22, 257–284 (1976). https://doi.org/10.1007/BF00654706

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00654706

Keywords

Navigation