Advertisement

Journal of Low Temperature Physics

, Volume 27, Issue 1–2, pp 139–157 | Cite as

Magnetoelectric distortion of superfluid3He: NMR shifts

  • David A. Dahl
Article

Abstract

The combined effect of electric and magnetic fields on the equilibrium state of B-3He and A-3He is examined through the Ginzburg-Landau formalism. The orientation of the anisotropic superfluid is shown to be sensitive (in B-3He) to both the relative strengths of the fields and the angle between them. Leggett's theory is used to predict dynamic magnetic phenomena. Shifts as well asdiscontinuous jumps in both the CW resonance frequencies and the parallel ringing signal are present for various configurations.

Keywords

Magnetic Field Equilibrium State Combine Effect Resonance Frequency Magnetic Material 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    A. J. Leggett,Rev. Mod. Phys. 47, 331 (1975).Google Scholar
  2. 2.
    J. C. Wheatley,Rev. Mod. Phys. 47, 415 (1975).Google Scholar
  3. 3.
    A. J. Leggett,Ann. Phys. (N.Y.)85, 11 (1974).Google Scholar
  4. 4.
    D. D. Osheroff and W. F. Brinkman,Phys. Rev. Lett. 32, 584 (1974).Google Scholar
  5. 5.
    W. F. Brinkman, H. Smith, D. D. Osheroff, and E. I. Blount,Phys. Rev. Lett. 33, 624 (1974).Google Scholar
  6. 6.
    S. Takagi,J. Phys. C 8, 1507 (1975).Google Scholar
  7. 7.
    A. L. Fetter,J. Low Temp. Phys. 23, 245 (1976).Google Scholar
  8. 8.
    J. M. Delrieu,J. de Physique Lett. 35, L-189 (1974); Erratum,36, L-22 (1975); K. Maki,Phys. Lett. 56A, 101 (1976).Google Scholar
  9. 9.
    D. A. Dahl, Ph.D. thesis, Stanford University (1975), unpublished.Google Scholar
  10. 10.
    W. J. Gully, C. M. Gould, R. C. Richardson, and D. M. Lee,Phys. Lett. 55A, 27 (1975).Google Scholar
  11. 11.
    G. Bogner,Cryogenics 12, 370 (1972).Google Scholar
  12. 12.
    R. Balian and N. R. Werthamer,Phys. Rev. 131, 1553 (1963).Google Scholar
  13. 13.
    N. D. Mermin and G. Stare,Phys. Rev. Lett. 30, 1135 (1973).Google Scholar
  14. 14.
    P. W. Anderson and W. F. Brinkman,Phys. Rev. Lett. 30, 1108 (1973); W. F. Brinkman and P. W. Anderson,Phys. Rev. A 8, 2732 (1973).Google Scholar
  15. 15.
    A. L. Fetter and J. D. Walecka,Quantum Theory of Many-Particle Systems (McGraw-Hill, New York, 1971). Section 50.Google Scholar
  16. 16.
    A. L. Fetter, inQuantum Statistics and the Many-Body Problem, S. B. Trickey, W. P. Kirk, and J. W. Dufty, eds. (Plenum Press, New York, 1975), p. 127;Phys. Lett. 54A, 63 (1975).Google Scholar

Copyright information

© Plenum Publishing Corporation 1977

Authors and Affiliations

  • David A. Dahl
    • 1
  1. 1.Institute of Theoretical Physics, Department of PhysicsStanford UniversityStanford

Personalised recommendations