Journal of Low Temperature Physics

, Volume 27, Issue 1–2, pp 107–124 | Cite as

Kinetics of phase transition in ideal and weakly interacting bose gas

  • E. Levich
  • V. Yakhot
Article

Abstract

The time evolution of a Bose system passing through the critical point is considered. The solution of the nonlinear integrodifferential equation that governs the kinetics demonstrates that the new phase formation proceeds by the set of essentially nonequilibrium states. The phase transition in an ideal Bose gas is of first order and can be completed att=∞ only if there are no nuclei of the new phase at the beginning of the cooling process. With nuclei the Bose condensate formation takes a finite time. A Bose gas with interaction between Bose particles exhibits a second-order phase transition with a finite time of new phase formation even without nuclei. The time evolution of an energy spectrum of a Bose system following the variation of its distribution function is considered and it is shown that the appearance of superfluidity coincides with the instant of Bose condensate formation.

Keywords

Phase Transition Distribution Function Time Evolution Energy Spectrum Magnetic Material 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    B. I. Halperin, P. C. Hohenberg, and S. K. Ma,Phys. Rev. B 13, 139 (1974); B. I. Halperin, P. C. Hohenberg, and S. K. Ma,Phys. Rev. B 13, 4119 (1976); A. Schmid and G. Schön,J. Low Temp. Phys. 20, 207 (1975).Google Scholar
  2. 2.
    F. Tanaka,Prog. Theor. Phys. 54, 1679 (1975).Google Scholar
  3. 3.
    K. Kawasaki,Prog. Theor. Phys. 54, 1675 (1975).Google Scholar
  4. 4.
    M. Archibald, J. M. Mochel, and L. Weaver,Phys. Rev. Lett. 21, 1156 (1968).Google Scholar
  5. 5.
    J. A. Tyson,Phys. Rev. Lett. 21, 1235 (1968).Google Scholar
  6. 6.
    E. Levich and V. Yakhot,Phys. Rev. B (1976), in press.Google Scholar
  7. 7.
    T. D. Lee, K. Huang, and C. N. Yang,Phys. Rev. 106, 1135 (1957).Google Scholar
  8. 8.
    N. N. Bogoliubov,J. Phys. 11, 23 (1947).Google Scholar
  9. 9.
    T. D. Lee and C. N. Yang, inStatistical Mechanics K. Huang, ed. (Wiley, New York, 1963).Google Scholar
  10. 10.
    D. N. Zubarev,Nonequilibrium Statistical Thermodynamics (Consultants Bureau, New York, 1974).Google Scholar
  11. 11.
    L. P. Kadanoff and G. Baym,Quantum Statistical Mechanics; Green's Function Methods in Equilibrium and Nonequilibrium Problems (New York, Benjamin, 1962).Google Scholar

Copyright information

© Plenum Publishing Corporation 1977

Authors and Affiliations

  • E. Levich
    • 1
  • V. Yakhot
    • 2
  1. 1.Department of Nuclear PhysicsThe Weizmann Institute of ScienceRehovotIsrael
  2. 2.Departments of Chemical Physics and Structural ChemistryThe Weizmann Institute of ScienceRehovotIsrael

Personalised recommendations