Journal of Low Temperature Physics

, Volume 15, Issue 5–6, pp 447–458 | Cite as

Low-temperature magnetothermal conductivity of pyrolytic graphite

  • C. K. Chau
  • S. Y. Lu


The basal plane thermal conductivity of three highly oriented pyrolytic graphite samples was measured in the temperature region between 0.36 and 4.2 K in various magnetic fields up to 23 kG. Analysis shows that the measured thermal conductivity is simply the sum of the electronic and the lattice contributions. The lattice thermal conductivity does not depend on the external magnetic field. The phonon mean free path is limited only by the crystallite boundaries. This evidence suggests that the electron-phonon interaction is very weak. Both magnitude and temperature dependence of the lattice thermal conductivity can be explained by Komatsu's semicontinuum model. The electronic thermal conductivity has a strong magnetic field dependence and is proportional to the absolute temperature. The magnitude of the electronic thermal conductivity can be related to the electrical resistivity by the free-electron Lorenz number.


Magnetic Field Thermal Conductivity Electrical Resistivity External Magnetic Field Strong Magnetic Field 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    G. A. Slack,Phys. Rev. 127, 694 (1962).Google Scholar
  2. 2.
    C. N. Hooker, A. Ubbelohde, and D. A. Young,Proc. Roy. Soc. A284, 17 (1965).Google Scholar
  3. 3.
    M. G. Holland and C. A. Klein,Phys. Rev. 136, 575 (1964).Google Scholar
  4. 4.
    M. G. Holland, C. A. Klein, and W. K. Straub,J. Phys. Chem. Solids 27, 903 (1966).Google Scholar
  5. 5.
    A. J. de Combarieu,J. de Physique 28, 931 (1967).Google Scholar
  6. 6.
    B. T. Kelly, inChemistry and Physics of Carbon, P. L. Walker, ed. (Marcel Dekker, New York, 1971), Vol. 7.Google Scholar
  7. 7.
    C. Ni, H. N. Spector, and H. Weinstock,Phys. Rev. B6, 3370 (1972).Google Scholar
  8. 8.
    K. J. Komatsu,J. Phys. Soc. Japan 10, 346 (1955);J. Phys. Chem. Solids 6, 380 (1958).Google Scholar
  9. 9.
    K. J. Komatsu and T. Nagamiya,J. Phys. Soc. Japan 6, 438 (1951);J. Chem. Phys. 22, 1457 (1954).Google Scholar
  10. 10.
    R. Berman, P. T. Netleu, F. V. Sheard, A. N. Spencer, R. W. H. Stevenson, and J. M. Ziman,Proc. Roy. Soc. A253, 403 (1959).Google Scholar
  11. 11.
    P. G. Klemens, inSolid State Physics, F. Seitz and D. Turnbull, eds. (Academic, New York, 1958), Vol. 7.Google Scholar
  12. 12.
    B. Dreyfus and R. J. Maynard,J. de Physique 28, 951 (1967).Google Scholar
  13. 13.
    P. A. Carruthers,Rev. Mod. Phys. 33, 92 (1961).Google Scholar
  14. 14.
    R. Taylor,Phil. Mag. 13, 157 (1966).Google Scholar
  15. 15.
    J. C. Bowan, J. A. Krumhansl, and J. T. Meers,Industrial Carbon and Graphite (Society of Chemical Industry, London, 1956), p. 52.Google Scholar
  16. 16.
    W. De Sorbo and G. E. Nichols,J. Chem. Solids 6, 352 (1958).Google Scholar
  17. 17.
    B. J. Van de Hoven and P. H. Keesom,Phys. Rev. 130, 1318 (1963).Google Scholar

Copyright information

© Plenum Publishing Corporation 1974

Authors and Affiliations

  • C. K. Chau
    • 1
  • S. Y. Lu
    • 1
  1. 1.Department of PhysicsIllinois Institute of TechnologyChicago

Personalised recommendations