Skip to main content
Log in

The rheology and microstructure of charged colloidal suspensions

  • Leading Contribution
  • Published:
Colloid and Polymer Science Aims and scope Submit manuscript

Abstract

The effects of electric charge interation and particle correlations on suspension rheology are examined. A one-component fluid analysis using a Smoluchowski equation for the equilibrium structure is applied to charged suspensions of spherical colloids under shear. The frequency dependent modulus and viscosity, predicted as functions of particle and added salt concentrations, are compared with published rheological measurements on model suspensions. Recent improvements in the statistical mechanical theories for the equilibrium microstructure, its nonequilibrium deformation, and the bulk shear stresses are included. The direct electrostatic interaction is found to drive the divergence in the shear viscosity near the liquid-solid phase transition. Extensions of the theory predict the elastic modulus of binary mixtures of charged colloids. Estimates of the primary electroviscous effect, hydrodynamic interactions, and errors in the Yukawa limiting form for the potential and applications of asymptotic theories are presented. Predictions for the rheology based on effective hard-sphere models are found to be reasonable when using a parameter fit from the equilibrium phase behavior. Mean-field mode coupling theories predict larger relaxation times than calculated from the Smoluchowski equation (=SE). A study of binary mixing effects on elasticity shows non-ideal behavior. It is noted that equilibrium structural information can be used to resolve discrepancies between the theoretical predictions and the measured rheology.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Hess W, Klein R (1983) Adv Phys 33:173

    Google Scholar 

  2. Nägele G, Medina-Noyola R, Klein M, Araub-Lara JL (1988) Physica 149A:123

    Google Scholar 

  3. Booth F (1950) Proc Royal Soc A 203:533

    Google Scholar 

  4. Russel WB (1976) J Coll Int Sci 55:590

    Google Scholar 

  5. Russel WB (1985) J Fluid Mech 85:209

    Google Scholar 

  6. Ohtsuki T (1981) Physica 108A:441

    Google Scholar 

  7. Ohtsuki T (1983) Physica 122A:212

    Google Scholar 

  8. Dhont JKG (1987) Physica 146:541

    Google Scholar 

  9. Wagner NJ, Russel WB (1989) Physica 155A:475

    Google Scholar 

  10. Wagner NJ, Russel WB (1990) Phys Fluids A2:491

    Google Scholar 

  11. Mitaku S, Ohtsuki T, Kishimoto A, Okano K (1980) Biophys Chem 11:411

    Google Scholar 

  12. Rogers FJ, Young DA (1984) Phys Rev A 30:999

    Google Scholar 

  13. D'Aguanno, Klein R (1990) to appear in Faraday Trans Chem Soc

  14. Russel WB (1987) The dynamics of colloidal systems. Univ Wisc Press, Madison Wisc

    Google Scholar 

  15. Hiemenz P (1986) Principles of colloid and surface chemistry, 2nd ed. Marcel Dekker, New York

    Google Scholar 

  16. Shaw DJ (1980) Introduction to colloid and surface chemistry, 3rd ed. Butterworths, London

    Google Scholar 

  17. Kruyt HR (1952) Colloid science volume 1. Elsevier, Amsterdam

    Google Scholar 

  18. Batchelor GK (1976) J Fluid Mech 74:1

    Google Scholar 

  19. Batchelor GK (1977) J Fluid Mech 83:97

    Google Scholar 

  20. Gray CG, Gubbing KE (1984) Theory of molecular fluids. Claredon Press, Oxford, 1

    Google Scholar 

  21. Batchelor GK (1967) An introduction to fluid dynamics. Cambridge University Press, Cambridge, England

    Google Scholar 

  22. Happel J, Brenner H (1965) Low Reynolds number hydrodynamics. Prentice-Hall, Englewood Cliffs, New Jersey

    Google Scholar 

  23. Batchelor GK, Green JT (1972) J Fluid Mech 56:375:401

    Google Scholar 

  24. Felderhof RB, Jones BU (1987) Physica A 146:417

    Google Scholar 

  25. Felderhof BU (1987) Physica A147:203:533

    Google Scholar 

  26. Mazur P, van Saarloos W (1982) Physica 115A:21

    Google Scholar 

  27. Beenakker CJW, Mazur P (1983) Phys Lett 98A:22

    Google Scholar 

  28. Bossis G, Brady JF (1989) J Chem Phys 91:1866

    Google Scholar 

  29. Brady JF, Bossis G (1988) Ann Rev Fluid Mech 20:111

    Google Scholar 

  30. Kim S, Mifflin RT (1985) Phys Fluids 28:2033

    Google Scholar 

  31. Jeffrey DJ, Onishi Y (1984) J Fluid Mech 139:261

    Google Scholar 

  32. Bell S, Levine GM, McCartney LN (1970) J Coll Int Sci 33:335

    Google Scholar 

  33. McQuarrie DA (1976) Statistical mechanics Harper and Row, New York

    Google Scholar 

  34. Zerah G, Hansen J-P (1986) J Chem Phys 84:2336

    Google Scholar 

  35. Cebula DJ, Goodwin JW, Jeffrey GC, Ottewil RH, Parentich A, Richardson RA (1983) Far Disc Chem Soc 76:37

    Google Scholar 

  36. Russel WB, Gast AP (1988) J Chem Phys 89:1580

    Google Scholar 

  37. Dhont JKG (1989) Journal of fluid mechanics 204:421

    Google Scholar 

  38. Klein R, Hess W, Nägele G (1987) Static and dynamic properties of suspensions of charged spherical particles. In: Safran SA, Clark NA (eds) Physics of complex and supermolecular fluids, page 673. John Wiley and Sons, New York

    Google Scholar 

  39. Schneidereit M (1989) Diplomarbeit Konstanz, B.R.D

  40. Ruiz-Estrada H, Vizcarra-Rendo A, Medina-Noyola M, Klein R (1986) Phys Rev A 34:3446

    Google Scholar 

  41. Ng K-C (1974) J Chem Phys 61:2690

    Google Scholar 

  42. Kim S, Private Comm

  43. deKruif CG, van Iersel EMF, Vrij A, Russel WB (1985) J Chem Phys 83:4717

    Google Scholar 

  44. Klein R, Hess W (1983) Faraday Discuss Chem Soc 76:137

    Google Scholar 

  45. Zwanzig R, Mountain RD (1965) J Chem Phys 43:4464

    Google Scholar 

  46. van der Werff JC (1990) The rheology of hard-sphere suspensions. PhD thesis, Rijksuniversiteit te Utrecht

  47. Lindsay HM, Dozier WD, Chaikin PM, Klein R, Hess W (1986) J Phys A: Math Gen 19:2583

    Google Scholar 

  48. Bengtzelius U, Götze W, Sjoelander A (1984) J Phys C: Solid State Phys 17:5915

    Google Scholar 

  49. Nägele G, Medina-Noyola JL, Arauz-Lara M, Klein R (1987) Prog Coll Poly Sci 73:5

    Google Scholar 

  50. Wagner NJ, Fuller GG, Russel WB (1988) J Chem Phys 89:1580

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wagner, N.J., Klein, R. The rheology and microstructure of charged colloidal suspensions. Colloid Polym Sci 269, 295–319 (1991). https://doi.org/10.1007/BF00654577

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00654577

Key words

Navigation