Journal of Low Temperature Physics

, Volume 17, Issue 1–2, pp 131–141 | Cite as

Superfluidity of solid4He

  • Julio F. Fernández
  • Marcello Puma


Using a procedure suggested by Leggett, an upper bound to the superfluid fraction in ground state solid 4 He slightly above the melting density is obtained numerically. The value obtained is 0.3±0.1. To judge the usefulness of this upper bound, we examine the conditions under which a symmetrized product of single-particle functions times a Jastrow function exhibits ODLRO, a necessary and sufficient condition for superfluid flow. It is found that ifUij (Uij=ί φ i (x j (x) dx, and φ i (x) is a single-particle wave function centered on the pointi) satisfies σ′iUij>x, wherex varies from unity for long rangeUij (i.e.,Uij decreases slowly enough asRi−Rj increases) to a value of 12/7 for nearest-neighbor overlap only in the hcp lattice, then there is ODLRO, but not otherwise. Therefore, if the accepted single-particle functions are the true ones, then there is no ODLRO in solid 4 He, since the overlap is too small. We have explored the possibility of adding a flat tail, of magnitude λ′(VN)−1/2 to the accepted single-particle functions. It is shown that if λ → 1 [λ 2 =(λ′) 2 +2(vNV−1)1/2, andv=(ί φi(x)dx)2], the system wave function becomes a pure Jastrow function, whereas if λ2−1≲−2×10 −1 , we have in effect the case where λ′=0; furthermore, there is ODLRO if λ 2 −1∼−2×10 −1 . It is also concluded that the superfluid fraction upper bound of 0.3±0.1 obtained here as well as one suggested by Leggett are not very useful. We have not attempted to establish if there is some value of λ satisfying the above inequality such that the ground-state energy is lower than the value it takes for λ′=0.


Wave Function Magnetic Material Function Time System Wave Symmetrize Product 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    A. J. Leggett,Phys. Rev. Letters 25, 1543 (1970).Google Scholar
  2. 2.
    R. A. Guyer,Phys. Rev. Letters 26, 174 (1971); W. J. Mullin,Phys. Rev. Letters 26, 611 (1971).Google Scholar
  3. 3.
    N. Byers and C. N. Yang,Phys. Rev. Letters 7, 46 (1961).Google Scholar
  4. 4.
    L. H. Nossanow,Phys. Rev. 146, 120 (1966); R. A. Guyer and L. I. Zane,Phys. Rev. 188, 445 (1969); R. A. Guyer,Solid State Physics, Vol. 23, Seitz, Turnball, and Ehrenreich, eds. (Academic Press, New York, 1969), p. 402.Google Scholar
  5. 5.
    B. H. Brandow,Ann. Phys. (New York)74, 112 (1972).Google Scholar
  6. 6.
    E. B. Osgood, V. J. Minkiewicz, T. A. Kitchens, and G. Shirane,Phys. Rev. A 5, 1537 (1972); N. R. Werthamer,Phys. Rev. Letters 28, 1102 (1972).Google Scholar
  7. 7.
    D. Sherrington,Phys. Letters 37A, 223 (1971); W. Kohn and D. Sherrington,Rev. Mod. Phys. 42, 1 (1970).Google Scholar
  8. 8.
    G. V. Chester,Phys. Rev. A 2, 256 (1970); L. Reatto,Phys. Rev. 183, 334 (1969); J. F. Fernández and H. A. Gersch,Phys. Rev. A 7, 239 (1973).Google Scholar
  9. 9.
    C. N. Yang,Rev. Mod. Phys. 34, 644 (1962).Google Scholar
  10. 10.
    O. Penrose and L. Onsager,Phys. Rev. 104, 576 (1956).Google Scholar
  11. 11.
    E. Stanley,Introduction to Phase Transitions and Critical Phenomena (Clarendon Press, Oxford, 1971), Chap. 9.Google Scholar
  12. 12.
    C. Domb,Adv. Chem. Phys. 15, 229 (1969).Google Scholar
  13. 13.
    W. L. McMillan,Phys. Rev. 138, 442 (1965).Google Scholar
  14. 14.
    J. P. Hansen,Phys. Letters 30A, 214 (1969); J. P. Hansen and E. L. Pollock,Phys. Rev. A 5, 2651 (1972).Google Scholar

Copyright information

© Plenum Publishing Corporation 1974

Authors and Affiliations

  • Julio F. Fernández
    • 1
  • Marcello Puma
    • 1
  1. 1.Instituto Venezolano de Investigaciones CientificasCaracasVenezuela

Personalised recommendations