Journal of Low Temperature Physics

, Volume 45, Issue 5–6, pp 409–428 | Cite as

Transverse acoustic impedance of normal liquid3He

  • F. P. Milliken
  • R. W. Richardson
  • S. J. Williamson


Both the real and imaginary parts of the transverse acoustic impedance of normal liquid3He have been measured at excitation frequencies of 10 and 30 MHz, fluid pressures from 0.7 to 27 bar, and temperatures from 3 mK to 1 K. The impedance is obtained from the changes in resonance frequency and Q of a quartz crystal, which is electrically driven to oscillate in a thickness shear mode while immersed in liquid3He. These results are compared with the predictions of Fermi liquid theory, which takes into account two contributions to the impedance: (1) incoherent single-quasiparticle excitations, and (2) the excitation of the collective transverse sound mode. At 0.7 bar, our measurements of the impedance are in agreement with the predictions of Fermi liquid theory and imply that the symmetric Fermi liquid parameterF2=1.25±0.4 ifF1=6.3. At higher pressures, we also observe agreement in the region ωτ<0.3, where ω is the excitation frequency and τ is the quasiparticle scattering time. However, above 8 bar in the zero-sound regime (ωτ≳1), the impedance is observed to be frequency dependent, at constant ωτ. This frequency dependence cannot be explained within the present framework of Fermi liquid theory.


Imaginary Part Resonance Frequency Frequency Dependence Fluid Pressure Excitation Frequency 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    L. D. Landau,Zh. Eksp. Teor. Fiz. 30, 1058 (1956);32, 59 (1957) [Sov. Phys.—JETP 3, 920 (1957);5, 101 (1957)].Google Scholar
  2. 2.
    B. E. Keen, P. W. Mathews, and J. Wilks,Phys. Lett. 5, 5 (1968);Proc. R. Soc. A 284, 125 (1965).Google Scholar
  3. 3.
    W. R. Abel, A. C. Anderson, and J. C. Wheatley,Phys. Rev. Lett. 17, 74 (1966).Google Scholar
  4. 4.
    J. C. Wheatley,Rev. Mod. Phys. 47, 415 (1975).Google Scholar
  5. 5.
    L. R. Corruccini, J. S. Clarke, N. D. Mermin, and J. W. Wilkins,Phys. Rev. 180, 225 (1969).Google Scholar
  6. 6.
    P. R. Roach and J. B. Ketterson,Phys. Rev. Lett. 36, 736 (1976).Google Scholar
  7. 7.
    P. R. Roach and J. B. Ketterson, inQuantum Fluids and Solids, S. B. Trickey, E. D. Adams, and J. W. Duffy, eds. (Plenum, New York, 1977), pp. 223–231.Google Scholar
  8. 8.
    E. G. Flowers, R. W. Richardson, and S. J. Williamson,Phys. Rev. Lett. 37, 309 (1976).Google Scholar
  9. 9.
    M. J. Lea, K. J. Butcher, and E. R. Dobbs,Commun. Phys. 2, 59 (1977).Google Scholar
  10. 10.
    G. Baym and C. Pethick, inThe Physics of Liquid and Solid Helium, K. H. Bennemann and J. B. Ketterson, eds. (Wiley, New York, 1977), Vol. II.Google Scholar
  11. 11.
    I. L. Bekarevich and I. M. Khalatnikov,Zh. Eksp. Teor. Fiz. 39, 1699 (1960) [Sov. Phys.—JETP 12, 1187 (1961)].Google Scholar
  12. 12.
    E. G. Flowers and R. W. Richardson,Phys. Rev. B 17, 1238 (1978).Google Scholar
  13. 13.
    R. W. Richardson,Phys. Rev. B 18, 6122 (1978).Google Scholar
  14. 14.
    G. A. Brooker and J. Sykes,Ann. Phys. 61, 387 (1970).Google Scholar
  15. 15.
    K. S. Dy and C. J. Pethick (unpublished), as quoted in D. T. Lawson, W. J. Gully, S. Goldstein, R. C. Richardson, and D. M. Lee,J. Low Temp. Phys. 15, 1969 (1974).Google Scholar
  16. 16.
    W. R. Abel, A. C. Anderson, W. C. Black, and J. C. Wheatley,Physics 1, 337 (1965).Google Scholar
  17. 17.
    D. F. Brewer, D. O. Edwards, and D. R. Howe,Cryogenics 5, 47 (1965).Google Scholar
  18. 18.
    L. C. Yang, Ph.D. thesis, University of California, Los Angeles (1973).Google Scholar
  19. 19.
    D. I. Bolef and J. G. Miller, inPhysical Acoustics, W. P. Mason and R. N. Thurston, eds. (Academic Press, New York, 1971), Vol. VIII, pp. 95–201.Google Scholar
  20. 20.
    L. D. Landau and E. M. Lifshitz,Fluid Mechanics (Pergamon, London, 1959), pp. 88–90.Google Scholar
  21. 21.
    M. P. Bertinat, D. S. Betts, D. F. Brewer, and G. J. Butterworth,J. Low Temp. Phys. 16, 479 (1974).Google Scholar
  22. 22.
    P. J. McCoy, M. Steinback, J. K. Lyden, and R. W. Guernsey, inProc. 14th Intern. Conf. Low Temp. Phys., M. Krusius and M. Vuorio, eds. (North-Holland, Amsterdam, 1975), Vol. 1, pp. 80–83.Google Scholar
  23. 23.
    F. P. Milliken, Ph.D. thesis, New York University (1981).Google Scholar
  24. 24.
    J. M. Parpia, D. J. Sandiford, J. E. Berthold, and J. D. Reppy,Phys. Rev. Lett. 40, 565 (1978).Google Scholar
  25. 25.
    J. P. Eisenstein, G. W. Swift, and R. E. Packard,Phys. Rev. Lett. 45, 1199 (1980).Google Scholar
  26. 26.
    T. A. Alvesalo, T. Haavasoja, P. C. Main, M. T. Mannison, J. Ray, and L. M. M. Rehn,Phys. Rev. Lett. 43, 1509 (1979).Google Scholar
  27. 27.
    F. P. Milliken and S. J. Williamson,Bull. Am. Phys. Soc. 24, 472 (1979).Google Scholar
  28. 28.
    A. P. Borovikov and V. P. Peshkov,Zh. Eksp. Teor. Fiz. 70, 300 (1976) [Sov. Phys.—JETP 43, 156 (1976)].Google Scholar
  29. 29.
    M. T. Béal-Monod,Solid State Commun. 32, 357 (1979).Google Scholar
  30. 30.
    M. T. Béal-Monod and A. Theumann, inProceedings of the International Conference on Ordering in Two Dimensions (Lake Geneva, Wisconsin, 1980).Google Scholar
  31. 31.
    A. I. Ahonen, T. A. Alvesalo, T. Haavasoja, and M. C. Veuro,Phys. Rev. Lett. 41, 494 (1978).Google Scholar
  32. 32.
    R. E. Nettleton,J. Phys. C 12, 3205 (1979).Google Scholar

Copyright information

© Plenum Publishing Corporation 1981

Authors and Affiliations

  • F. P. Milliken
    • 1
  • R. W. Richardson
    • 1
  • S. J. Williamson
    • 1
  1. 1.Department of PhysicsNew York UniversityNew York

Personalised recommendations