Skip to main content
Log in

Velocity of sound in solid hexagonal close-packed H2 and D2

  • Published:
Journal of Low Temperature Physics Aims and scope Submit manuscript

Abstract

Sound velocity measurements are reported on samples of hexagonal close-packed H2 and D2, believed to be single crystals. In the first part of the experiments, both the longitudinal and transverse velocities (v 1 and v t ) of crystals grown at a given melting pressureP M were measured at 4.2 K. For each mode, the velocities plotted vs.P M were found to lie between approximately parallel lines that represented the maximum and minimum observable velocities under the given experimental conditions set by the acoustic cell dimensions. From these extreme velocities v 1max, v 1min, v tmax, and v tmin an estimation of the elastic constants was made. Knowledge of these constants in turn permitted the calculation of the velocity surface, the bulk modulus, and the Debye temperature. In spite of the uncertainties in the analysis of the present data, a meaningful comparison could be made with results from other experiments. For both and D 2 , the elastic constants are on the average ∼20% below those derived from neutron scattering data. The transverse velocities, both for H 2 and D 2 , are consistent with those of Bezuglyi and Minyafaev for polycrystalline samples, but the longitudinal velocities are about 10% smaller than those of these authors. The bulk modulus and the Debye temperature from our experiments are compared with those from equation-of-state and calorimetric experiments. In the second part of this research, we have investigated the temperature dependence of the sound velocities at constant volume for both H 2 and D 2 with low concentrationsX of molecules with rotational angular momentumJ=1. From the measurements in H 2 , we are able to calculate the temperature change in the bulk modulus, which is then compared with that calculated from calorimetric data assuming the validity of the Grüneisen equation of state. Good agreement is obtained. In solid D 2 , were were able to deduce the temperature dependence of the adiabatic and isothermal modulusc 33 and make a rough estimation for that ofc 13 . In the third part we present measurements of v 1 and v t at 42 K and at constant volume as a function ofX in solid H 2 . It is found that as the orthopara conversion proceeds,v 1 increases andv t decreases. From these measurements the bulk modulus change withX is calculated. Comparison with the bulk modulus change calculated from static pressure measurements, assuming electric quadrupole-quadrupole interaction between the (J=1) molecules, shows very good agreement. The calculated dependence of the Debye temperature onX, as obtained from a combination of sound velocity and static measurements, is smaller than that reported from recent neutron scattering results. A short section is then devoted to absorption measurements in solid H 2 , which gave only qualitative results. Finally, in Section 4, we present measurements of the sound velocity in liquid D 2 at saturated vapor pressure as a function of temperature and for both liquid H 2 and D 2 along the melting curve.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. N. R. Werthamer,Am. J. Phys. 37, 763 (1969).

    Google Scholar 

  2. See, for instance, G. Ahlers,Phys. Rev. A2, 1505 (1970), and references therein.

    Google Scholar 

  3. R. H. Crepeau, O. Heybey, D. M. Lee, and S. A. Strauss,Phys. Rev. A3, 1162 (1971); R. H. Crepeau and D. M. Lee,Phys. Rev. A6, 516 (1972).

    Google Scholar 

  4. R. Wanner and J. P. Franck,Phys. Rev. Letters 24, 365 (1970).

    Google Scholar 

  5. D. S. Greywall and J. A. Munarin,Phys. Rev. Letters 24, 1282 (1970); D. S. Greywall,Phys. Rev. A3, 2106 (1971).

    Google Scholar 

  6. R. Wanner, thesis, University of Alberta, 1970, unpublished.

  7. R. D. Etters, J. C. Raich, and P. Chand,J. Low Temp. Phys. 5, 711 (1971); C. Ebner and C. C. Sung,Solid State Commun. 11, 489 (1972), and references therein.

    Google Scholar 

  8. M. L. Klein and T. R. Koehler,Phys. Letters 33A, 253 (1970);J. Phys. C 3, 102 (1970); K. N. Klump, O. Schnepp, and L. H. Nosanow,Phys. Rev. B1, 2496 (1970).

    Google Scholar 

  9. H. D. Megaw,Phil. Mag. 28, 129 (1933).

    Google Scholar 

  10. J. W. Stewart,Phys. Rev. 97, 578 (1955).

    Google Scholar 

  11. B. G. Udovidchenko and V. G. Manzhelii,J. Low Temp. Phys. 3, 429 (1970).

    Google Scholar 

  12. G. Ahlers,J. Chem. Phys. 41, 86 (1964).

    Google Scholar 

  13. R. J. Roberts and J. G. Daunt,J. Low Temp. Phys. 6, 97 (1972).

    Google Scholar 

  14. J. F. Jarvis, D. Ramm, and H. Meyer,Phys. Rev. 178, 1461 (1969), and unpublished data above 4 K.

    Google Scholar 

  15. R. W. Hill and O. V. Lounasmaa,Phil. Mag. 4, 785 (1959).

    Google Scholar 

  16. D. Ramm, H. Meyer, and R. L. Mills,Phys. Rev. B1, 2763 (1970).

    Google Scholar 

  17. P. A. Bezuglyi and R. Kh. Minyafaev,Fiz. Tverd. Tela 9, 624 (1967) [English transl.,Soviet Phys.—Solid State 9, 480 (1967)].

    Google Scholar 

  18. P. A. Bezuglyi and R. Kh. Minyafaev,Fiz. Tverd. Tela 9, 3622 (1967) [English transl.,Soviet Phys.—Solid State 9, 2854 (1968)].

    Google Scholar 

  19. P. A. Bezuglyi, R. O. Plakhotin, and L. M. Tarasenko,Fiz. Tverd. Tela 13, 309 (1971) [English trans].,Soviet Phys.—Solid State 13, 250 (1971)].

    Google Scholar 

  20. Solid D2, M. Nielsen and H. Bjerrum Møller,Phys. Rev. B3, 4383 (1971); solid D2 and H2, M. Nielsen, private communication and to be published.

    Google Scholar 

  21. L. Meyer, inAdvances in Chemical Physics, I. Prigogine and S. A. Rice, eds. (Interscience Publishers, New York, 1969), Vol. 16, p. 353ff.

    Google Scholar 

  22. T. Nakamura,Progr. Theoret. Phys. (Kyoto)14, 135 (1955).

    Google Scholar 

  23. R. Wanner, H. Meyer, and R. L. Mills, to be published.

  24. J. H. Vignos and H. A. Fairbank,Phys. Rev. 147, 185 (1966).

    Google Scholar 

  25. R. Wanner and H. Meyer,Phys. Letters 41A, 189 (1972); Proc. Intern. Low Temperature Physics, LT 13, Boulder, Colorado, 1973, to be published.

    Google Scholar 

  26. M. Nielsen, private communication; see also M. Nielsen in Ref. 20.

  27. J. P. Franck and R. Wanner,Phys. Rev. Letters 25, 345 (1970).

    Google Scholar 

  28. M. J. P. Musgrave,Proc. Roy Soc. (London)A226, 329, 356 (1954).

    Google Scholar 

  29. Landolt-Börnstein, inNew Series, Vol. III/1, Elastic, Piezoelectric and Related Constants of Crystals, R. F. S. Hearmon and K. H. Hellwege, ed. (Springer Verlag, New York, 1966).

    Google Scholar 

  30. R. L. Mills and A. F. Schuch,Phys. Rev. Letters 15, 722 (1965); A. F. Schuch and R. L. Mills,Phys. Rev. Letters 16, 616 (1966);

    Google Scholar 

  31. O. Bostanjoglo and R. Kleinschmidt,J. Chem. Phys. 46, 2004 (1967);

    Google Scholar 

  32. K. F. Mucker, P. M. Harris, D. White, and R. A. Erickson,J. Chem. Phys. 49, 1922 (1968).

    Google Scholar 

  33. B. A. Younglove,J. Chem. Phys. 48, 4181 (1968); see also R. F. Dwyer, G. A. Cook, O. E. Berwaldt, and H. E. Nevins,J. Chem. Phys. 43, 801 (1965).

    Google Scholar 

  34. B. Wallace and H. Meyer, Proc. International Low Temperature Conference, LT 13, Boulder, Colorado, 1972, to be published.

  35. E. Bartholomé, Z. Physik. Chem.B33, 387 (1936).

    Google Scholar 

  36. J. F. Nye,Physical Properties of Crystals (The Clarendon Press, Oxford, 1964).

    Google Scholar 

  37. W. B. Daniels, inLattice Dynamics, R. F. Wallis, ed. (Pergamon Press, London, 1965).

    Google Scholar 

  38. H. Stein, H. Stiller, and R. Stockmeyer,J. Chem. Phys. 57, 1726 (1972).

    Google Scholar 

  39. A. B. Bhatia,Ultrasonic Absorption (Oxford University Press, London, 1967), p. 40 and ff.

    Google Scholar 

  40. C. A. Swenson,J. Phys. Chem. Solids 29, 1337 (1968).

    Google Scholar 

  41. H. Miyagi and T. Nakamura,Progr. Theoret. Phys. (Kyoto),37, 641 (1967).

    Google Scholar 

  42. H. Miyagi, thesis, Osaka University, 1970, unpublished.

  43. A. J. Berlinsky, A. B. Harris, and H. Meyer,Effects of Librational Anharmonicity in the Solid Hydrogens (submitted for publication), and references therein.

  44. R. W. Hill and B. Schneidmesser,Z. Phys. Chem. 16, 257 (1958); R. G. Bohn and C. F. Mate,Phys. Rev. B2, 2121 (1971).

    Google Scholar 

  45. A. Van Itterbeek, W. van Dael, and A. Cops,Physica 27, 111 (1961);29, 965 (1963).

    Google Scholar 

  46. B. A. Younglove,J. Acoust. Soc. Am. 38, 433 (1965).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Work supported by grants from the National Science Foundation and from the Army Research Office, Durham.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wanner, R., Meyer, H. Velocity of sound in solid hexagonal close-packed H2 and D2 . J Low Temp Phys 11, 715–744 (1973). https://doi.org/10.1007/BF00654454

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00654454

Keywords

Navigation