Skip to main content
Log in

Investigation of energy-gap anisotropy in superconducting aluminum, cadmium, and zinc

  • Published:
Journal of Low Temperature Physics Aims and scope Submit manuscript

Abstract

Measurements of the low-temperature specific heat of the pure metal and dilute nonmagnetic alloys of Al, Cd, and Zn are described. The washing out of the energy gap anisotropy with increasing impurity as predicted by Anderson was observed in aluminum-magnesium alloys, and the mean-squared anisotropy parameter 〈a 2〉 was measured to be 〈a 2〉⋍0.010. Values deduced from measurements on Zn and Cd and their corresponding alloys with 1≲ξ0 gave 〈a 2〉⋍0.02 for Zn and 〈a 2〉⋍0.05 for Cd. Values of the gaps determined by fitting to a two-gap model are given and compared to those deduced from previous work.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. Bardeen, L. N. Cooper, and J. R. Schrieffer,Phys. Rev. 108, 1175 (1957).

    Google Scholar 

  2. H. A. Boorse,Phys. Rev. Letters 2, 391 (1959).

    Google Scholar 

  3. J. D. N. Cheeke and E. Ducla-Soares,Phys. Letters 27A, 264 (1968).

    Google Scholar 

  4. E. Ducla-Soares and J. D. N. Cheeke, Low Temp. Phys., LT 12, Kyoto, 1970, p. 305.

  5. C. R. Leavens and J. P. Carbotte,Solid State Commun. 9, 75 (1971);Ann. Phys. (N.Y.), April (1972).

    Google Scholar 

  6. P. W. Anderson,J. Phys. Chem. Solids 11, 26 (1959).

    Google Scholar 

  7. D. Markowitz and L. P. Kadanoff,Phys. Rev. 131, 563 (1963).

    Google Scholar 

  8. J. R. Clem,Ann. Phys. (N. Y.)40, 268 (1966).

    Google Scholar 

  9. J. R. Clem,Phys. Rev. 148, 392 (1966).

    Google Scholar 

  10. B. T. Geilikman and V. Z. Kresin,Soviet Phys.—Solid State 5, 2605 (1964).

    Google Scholar 

  11. A. J. Bennett,Phys. Rev. 140, A1902 (1965).

    Google Scholar 

  12. J. F. Balsley and J. C. Swihart, Low Temp. Phys., LT 12, Kyoto, 1970, p. 303.

  13. N. E. Phillips, Low Temperature Calorimetry Conference Otaniemi Ann. Academia Sciente Fennicae, series A, VI,Physica 210 (1966).

  14. S. Marcucci, thesis, University of Grenoble, 1966.

  15. J. R. Keyston, A. Lacaze, and D. Thoulouze,Cryogenics 8, 295 (1968).

    Google Scholar 

  16. E. Ducla-Soares, thesis, University of Grenoble, 1971.

  17. J. C. Michel, thesis, University of Grenoble, 1968.

  18. G. Martin, J. DeLaplace, and J. Hillairet, Note C.E.A. No. 585, C.E.N.G., Grenoble, 1966.

  19. R. Geiser and B. B. Goodman,Phys. Letters 5, 30 (1963).

    Google Scholar 

  20. N. E. Phillips,Phys. Rev. 114, 676 (1959).

    Google Scholar 

  21. T. E. Faber and A. B. Pippard,Proc. Roy. Soc. (London)A231, 336 (1955).

    Google Scholar 

  22. H. J. Blythe, T. M. Holden, M. Dixon, and F. E. Hoare,Phil. Mag. 11, 235 (1955).

    Google Scholar 

  23. B. L. Blackford and R. H. March,Can. J. Phys. 46, 141 (1968).

    Google Scholar 

  24. G. L. Wells, J. E. Jackson, and E. N. Mitchell,Phys. Rev. 1, 3836 (1970).

    Google Scholar 

  25. L. Yun Lung Shen, N. M. Senozan, and N. E. Phillips,Phys. Rev. Letters 14, 1025 (1965).

    Google Scholar 

  26. J. W. Hafstrom and M. L. A. MacVicar,Phys. Rev. B2, 4511 (1970).

    Google Scholar 

  27. E. Fawcett, inThe Fermi Surface, W. A. Harrison and M. B. Webb, eds. (John Wiley and Sons, New York, 1960), p. 197.

    Google Scholar 

  28. N. V. Zavaritskii,Soviet Phys.—JETP 12, 831 (1961).

    Google Scholar 

  29. N. E. Phillips,Phys. Rev. 134, A385 (1964).

    Google Scholar 

  30. D. L. Martin,Proc. Phys. Soc. (London)78, 1482 (1961).

    Google Scholar 

  31. D. Farrell, J. G. Park, and B. R. Coles,Phys. Rev. Letters 13, 328 (1964).

    Google Scholar 

  32. G. Boato, G. Gallinaro, and C. Rizzuto,Phys. Rev. 148, 353 (1966).

    Google Scholar 

  33. P. Truant and J. P. Carbotte, private communication.

  34. J. B. Evans, M. P. Garfunkel, and D. A. Hays,Phys. Rev. B1, 3629 (1970).

    Google Scholar 

  35. M. J. Lea and E. R. Dobbs,Phys. Letters 27A, 556 (1968).

    Google Scholar 

  36. R. E. Fassnacht and J. R. Dillinger,Phys. Rev. 164, 565 (1967).

    Google Scholar 

  37. D. A. Hays,Phys. Rev. B1, 3631 (1970).

    Google Scholar 

  38. D. R. Peck and E. R. Dobbs,Phys. Letters 35A, 196 (1971).

    Google Scholar 

  39. R. A. Young,Phys. Rev. 183, 611 (1969).

    Google Scholar 

  40. H. Suhl, B. T. Matthias, and L. R. Walker,Phys. Rev. Letters 3, 552 (1959).

    Google Scholar 

  41. W. D. Gregory, M. A. Superata, and P. J. Carroll,Phys. Rev. B3, 85 (1971).

    Google Scholar 

  42. N. E. Phillips,CRC Critical Reviews in Solid State Sciences 2, 467 (1971).

    Google Scholar 

  43. G. Chanin, E. A. Lynton, and B. Serin,Phys. Rev. 114, 719 (1959).

    Google Scholar 

  44. Y. Masuda,Phys. Rev. 126, 1271 (1962).

    Google Scholar 

  45. E. P. Harris and D. E. Mapother,Phys. Rev. 165, 522 (1968).

    Google Scholar 

  46. E. Hughes, D. J. Meredith, and E. R. Dobbs,Phys. Letters 38A, 325 (1972).

    Google Scholar 

  47. D. V. Gubser,Phys. Rev. B6, 827 (1972).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cheeke, J.D.N., Ducla-Soares, E. Investigation of energy-gap anisotropy in superconducting aluminum, cadmium, and zinc. J Low Temp Phys 11, 687–714 (1973). https://doi.org/10.1007/BF00654453

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00654453

Keywords

Navigation