Journal of Low Temperature Physics

, Volume 11, Issue 5–6, pp 623–638 | Cite as

Response of a superconductor to a static, spatially dependent perturbation of the interaction constant

  • A. E. Jacobs


The proximity effect between two materials with slightly different interaction constants is considered. A perturbation expansion of the Gor'kov equations and the self-consistency equation is employed to derive self-consistent results for the Green functions and the order parameter, the expansion parameter being the difference of the interaction constants. A similar expansion of Eilenberger's equations is used to generalize these results to the impure case. The first-order perturbation to the order parameter is analyzed, and its asymptotic behavior is obtained.


Asymptotic Behavior Magnetic Material Green Function Proximity Effect Interaction Constant 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    G. Eilenberger,Z. Physik 214, 195 (1968).Google Scholar
  2. 2.
    W. L. McMillan and P. W. Anderson,Phys. Rev. Letters 16, 85 (1966).Google Scholar
  3. 3.
    J. M. Rowell and W. L. McMillan,Phys. Rev. Letters 16, 453 (1966).Google Scholar
  4. 4.
    T. Wolfram,Phys. Rev. 170, 481 (1968).Google Scholar
  5. 5.
    W. L. McMillan,Phys. Rev. 175, 559 (1968).Google Scholar
  6. 6.
    J. Demers and A. Griffin,Can. J. Phys. 49, 285 (1971), and references contained therein.Google Scholar
  7. 7.
    R. M. Cleary,Phys. Rev. B5, 67 (1972).Google Scholar
  8. 8.
    J. Clarke, S. M. Freake, M. L. Rappaport, and T. L. Thorp,Solid State Commun. 11, 689 (1972).Google Scholar
  9. 9.
    A. A. Abrikosov, L. P. Gor'kov, and I. Y. Dzyaloshinskii,Quantum Field Theoretical Methods in Statistical Physics (Pergamon Press, London, 1965), Section 37.1.Google Scholar
  10. 10.
    A. E. Jacobs,Phys. Letters 38A, 153 (1972).Google Scholar
  11. 11.
    M. C. Leung and A. E. Jacobs,J. Low Temp. Phys. 11, 395 (1973).Google Scholar
  12. 12.
    See, for example, A. L. Fetter and J. D. Walecka,Quantum Theory of Many-Particle System (McGraw-Hill, New York, 1971), Section 51.Google Scholar
  13. 13.
    A. E. Jacobs, unpublished work.Google Scholar
  14. 14.
    G. Eilenberger and H. Büttner,Z. Physik 224, 335 (1969).Google Scholar
  15. 15.
    W. Silvert and L. N. Cooper,Phys. Rev. 141, 336 (1966).Google Scholar

Copyright information

© Plenum Publishing Corporation 1973

Authors and Affiliations

  • A. E. Jacobs
    • 1
  1. 1.Department of PhysicsUniversity of TorontoTorontoCanada

Personalised recommendations