Journal of Low Temperature Physics

, Volume 13, Issue 1–2, pp 185–193 | Cite as

Does a persistent current exist in a superfluid helium film?

  • F. Wagner


The transfer rate of helium film was measured in a container with typical dimensions of 1 cm. The film flow was induced thermally. Superimposed to the film flow was a rotation of the container. If a velocity difference between substrate and superfluid component were possible, the critical film flow rate would be expected to depend on the angular velocity of the rotation. No such dependence was found. We conclude that a sizable persistent current in a helium film in this geometry is not possible. This result is in agreement with measurements of Wang and Rudnick and in contradiction to those of Henkelet al.


Helium Angular Velocity Magnetic Material Transfer Rate Typical Dimension 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    E. Van Sprousen, H. J. Verbeek, R. De Bruyn Ouboter, K. W. Taconis, and H. Van Beelen,Physica 61, 129 (1972).Google Scholar
  2. 2.
    R. P. Henkel, G. Kuckich, and J. D. Reppy, inProc. 11th Int. Conf. Low Temp. Phys., St. Andrews, Scotland, 1968.Google Scholar
  3. 3.
    J. D. Reppy,Phys. Rev. Letters 14, 733 (1965); J. B. Mehl and W. Zimmermann, Jr.,Phys. Rev. Letters 14, 815 (1965).Google Scholar
  4. 4.
    T. G. Wang and I. Rudnick, inLow Temperature Physics LT 13 (Proc. 13th Int. Conf. Low Temp. Phys., 1972) (Plenum, New York, 1973).Google Scholar
  5. 5.
    K. R. Atkins and I. Rudnick,Progress in Low Temperature Physics, Vol. 6, C. J. Gorter, ed. (North-Holland, Amsterdam, 1970), Chapter 2.Google Scholar
  6. 6.
    R. Bowers, D. F. Brewer, and K. Mendelssohn,Phil. Mag. 42, 1445 (1951).Google Scholar
  7. 7.
    B. Smith and H. A. Borse,Phys. Rev. 98, 328 (1955).Google Scholar
  8. 8.
    E. Ambler and N. Kurti,Phil. Mag. 43, 260 (1952).Google Scholar
  9. 9.
    K. Mendelssohn and G. K. White,Proc. phys. Soc. A 63, 1328 (1950).Google Scholar
  10. 10.
    G. R. Herbert, K. L. Chopra, and J. B. Brown,Phys. Rev. 106, 391 (1957).Google Scholar
  11. 11.
    R. K. Waring,Phys. Rev. 99, 1704 (1955).Google Scholar
  12. 12.
    J. Wilks,The Properties of Liquid and Solid Helium (Clarendon Press, Oxford 1967), Section 14.6.Google Scholar
  13. 13.
    W. M. Van Alphen, G. J. Van Haasteren, R. De Bruyn Ouboter, and K. W. Taconis,Phys. Lett. 20, 474 (1966).Google Scholar
  14. 14.
    R. J. Donnelly and A. L. Fetter,Phys. Rev. Lett. 17, 747 (1966).Google Scholar
  15. 15.
    A. L. Fetter,Phys. Rev. 153, 285 (1967).Google Scholar
  16. 16.
    J. S. Langer and M. E. Fisher,Phys. Rev. Lett. 19, 560 (1967).Google Scholar

Copyright information

© Plenum Publishing Corporation 1973

Authors and Affiliations

  • F. Wagner
    • 1
  1. 1.Physik-Department E-10 der Technischen Universität MünchenMünchenWest Germany

Personalised recommendations