Advertisement

Journal of Low Temperature Physics

, Volume 13, Issue 1–2, pp 113–147 | Cite as

Thermodynamic properties of liquid3He-4He mixtures near the tricritical point. I. Vapor pressure measurements and their thermodynamic analysis

  • G. Goellner
  • R. Behringer
  • H. Meyer
Article

Abstract

Sensitive vapor pressure (Psat) measurements of 3 He- 4 He mixtures by means of a low-temperature strain gauge are described over the temperature range 0.5–1.5 K and the range 0.4<X<0.85, whereX is the 3 He mole fraction in the liquid phase. The vapor pressure cell is flat, with a height of only 2 mm, in order to reduce concentration gradients near the tricritical point. The pressure-sensitive device, which resolves changes of about 5×10 −8 atm, is described, and its advantages over a conventional manometer system are discussed. Data taken successively on mixtures of small mole fraction difference are used to locate the phase separation boundary in theT-X plane and also the lambda line from a change in (∂Psat/∂T) x at these transitions. The limiting slopes (dT/dX)σ and (dT/dX)λ of the phase separation curve and the lambda line in the vicinity of their junction point, the tricritical point, are presented and compared with previous work. From the vapor pressure data, the concentration susceptibility (∂X/∂Δ) T,P was obtained. Here Δ=μ 3 −μ 4 is the chemical potential difference of the respective isotopic components 3 He and 4 He. It is shown that (∂X/∂Δ) t diverges as the tricritical point is approached along various paths in theT-X plane, and the relevant tricritical exponents are presented. The weak divergence of (∂X/∂Δ) T along the lambda line predicted from the postulates of Griffiths and Wheeler could not be detected and it is believed that such divergence has to occur in a temperature interval that is far too small to be resolved with present-day techniques. Furthermore, gravity effects might well prevent observation of the weak divergence. The lambda transition is well evidenced by a distinct “shoulder” in a plot of (∂X/∂Δ) T at constantX as a function ofT. This “shoulder” becomes smaller and gradually gets topped by a peak asX decreases from the tricritical mole fractionX t . From a combination of vapor pressure and calorimetric data the chemical potential difference [Δ(X, T)-Δ t ] is calculated between 0.78 and 1.22 K. Here Δ t is the value at the tricritical point. From this tabulation the critical line and its slope (dΔ/dT)λ are obtained and compared with previous values based on calorimetric experiments only and with calculations based on the excess chemical potentials μ 3 E and μ 4 E derived from saturated vapor pressure data.

Keywords

Tricritical Point Vapor Pressure Measurement Vapor Pressure Data Chemical Potential Difference Separation Curve 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    T. A. Alvesalo, P. M. Berglund, S. T. Islander, G. R. Pickett, and W. Zimmermann,Phys. Rev. A4, 2354 (1971).Google Scholar
  2. 2.
    S. T. Islander and W. Zimmermann,Phys. Rev. A7, 188 (1973), and references cited therein.Google Scholar
  3. 3.
    G. Goellner, Ph.D. Thesis, Duke Univ., 1972, unpublished.Google Scholar
  4. 4.
    H. Meyer,Bull. Am. Phys. Soc. 17, 232 (1972); R. Behringer, G. Goellner, and H. Meyer,Bull. Am. Phys. Soc. 18, 642 (1973).Google Scholar
  5. 5.
    G. Goellner and H. Meyer,Phys. Rev. Letters 26, 1534 (1971).Google Scholar
  6. 6.
    Paper with E. K. Riedel (to be published).Google Scholar
  7. 7.
    R. B. Griffiths,Phys. Rev. Letters 24, 715 (1970).Google Scholar
  8. 8.
    E. K. Riedel,Phys. Rev. Letters 28, 675 (1972).Google Scholar
  9. 9.
    R. B. Griffiths and J. C. Wheeler,Phys. Rev. 2A, 1047 (1970).Google Scholar
  10. 10.
    G. Ahlers (to be published).Google Scholar
  11. 11.
    G. Ahlers,The Physics of Liquid and Solid Helium (to be published), Chapter VIII, Experiments near the Superfluid Transition.Google Scholar
  12. 12.
    S. G. Sydoriak and T. R. Roberts,Phys. Rev. 118, 901 (1960).Google Scholar
  13. 13.
    K. W. Taconis and R. De Bruyn-Ouboter, inProgress in Low Temperature Physics, Vol. IV, (North-Holland, Amsterdam 1964), p. 38.Google Scholar
  14. 14.
    E. C. Kerr,Phys. Rev. Letters 12, 185 (1964).Google Scholar
  15. 15.
    G. Goellner, R. Behringer, and H. Meyer (to be published).Google Scholar
  16. 16.
    M. J. Buckingham and W. M. Fairbank, inProgress in Low Temperature Physics, Vol. III, C. J. Gorter, ed. (North-Holland, Amsterdam, 1961), Chapter 3.Google Scholar
  17. 17.
    F. M. Gasparini and M. Moldover,Phys. Rev. Letters 23, 749 (1969).Google Scholar
  18. 18.
    F. M. Gasparini, Thesis, Univ. of Minnesota, 1970 (unpublished).Google Scholar
  19. 19.
    F. M. Gasparini and M. Moldover, inLow Temperature Physics LT 13 (Proc. Intern. Conf. Low Temp. Phys., Boulder, Colorado, 1972), J. G. Daunt, ed. (Plenum, New York, 1973).Google Scholar
  20. 20.
    E. H. Graf, D. M. Lee, and J. D. Reppy,Phys. Rev. Letters 19, 417 (1967).Google Scholar
  21. 21.
    J. F. Jarvis, D. Ramm, and H. Meyer,Phys. Rev. 170, 320 (1968).Google Scholar
  22. 22.
    G. C. Straty and E. D. Adams,Rev. Sci. Instr. 40, 1393 (1969).Google Scholar
  23. 23.
    C. Boghosian, H. Meyer, and J. E. Rives,Phys. Rev. 146, 110 (1966).Google Scholar
  24. 24.
    T. R. Roberts and S. G. Sydoriak,Phys. Rev. 102, 304 (1956).Google Scholar
  25. 25.
    T. R. Roberts, R. H. Sherman, and S. G. Sydoriak, inProgress in Low Temperature Physics, Vol. IV, C. G. Gorter, ed. (North-Holland, Amsterdam), p. 480.Google Scholar
  26. 26.
    G. Ahlers and D. Greywall, inLow Temperature Physics LT 13 (Proc. Intern. Conf. Low Temp. Phys., Boulder, Colorado, 1972), J. G. Daunt, ed. (Plenum, New York, 1973).Google Scholar
  27. 27.
    R. Watts and W. W. Webb, inLow Temperature Physics LT 13 (Proc. Intern. Conf. Low Temp. Phys., Boulder, Colorado), J. G. Daunt, ed. (Plenum, New York, 1973).Google Scholar
  28. 28.
    J. E. Kilpatrick, W. E. Keller, E. F. Hammel, and N. Metropolis,Phys. Rev. 94, 1103 (1954).Google Scholar
  29. 29.
    T. R. Roberts and B. K. Swartz, inSecond Symposium on Liquid and Solid He 3 (Ohio State Univ. Press, Columbus, Ohio, 1960), p. 158.Google Scholar
  30. 30.
    R. B. Griffiths,Phys. Rev. B7, 545 (1973).Google Scholar
  31. 31.
    M. Blume, V. J. Emery, and R. B. Griffiths,Phys. Rev. 4A, 1071 (1971).Google Scholar
  32. 32.
    D. M. Saul and M. Wortis, inAIP Proceedings Conference on Magnetism and Magnetic Materials (American Institute of Physics, 1971), p. 349.Google Scholar
  33. 33.
    R. B. Griffiths, private communication of unpublished calculations (October 1972).Google Scholar

Copyright information

© Plenum Publishing Corporation 1973

Authors and Affiliations

  • G. Goellner
    • 1
  • R. Behringer
    • 1
  • H. Meyer
    • 1
  1. 1.Duke UniversityDurham

Personalised recommendations