Journal of Solution Chemistry

, Volume 5, Issue 3, pp 203–211 | Cite as

Thermodynamics of bolaform electrolytes. V. Enthalpies and heat capacities in aqueous urea solutions

  • R. E. Verrall
  • L. W. Dickson


The partial molal heats of solution at infinite dilution of 1,4-bis(triethylammonium)butane dibromide and 1,10-bis(triethylammonium)decane dibromide in aqueous urea (up to 8m urea) have been determined calorimetrically in the temperature range 18–33°C. These data have been used to derive the partial molal heat capacities at infinite dilution, the enthalpies of transfer, and heat capacities of transfer at infinite dilution from water to urea-water solutions. The results show that the enthalpies of transfer are negative and decrease with increasing urea concentrations. The heat capacities of transfer are negative at low urea concentrations and increase in magnitude at higher urea concentrations. In the case of the smaller cation the partial molal heat capacity in 8m aqueous urea solution is greater than in pure water. The results are discussed in terms of structural changes in the solvents on dissolution.

Key words

Bolaform electrolytes partial molal heat capacity partial molal heats of solution water-urea solutions structural effects 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    J. A. Burns and R. E. Verrall,J. Solution Chem. 2, 489 (1973).Google Scholar
  2. 2.
    J. A. Burns and R. E. Verrall,Thermochim. Acta 9, 277 (1974).Google Scholar
  3. 3.
    J. A. Burns and R. E. Verrall,J. Solution Chem. 3, 289 (1974).Google Scholar
  4. 4.
    J. A. Burns and R. E. Verrall,J. Solution Chem. 4, 369 (1975).Google Scholar
  5. 5.
    P. R. Philip, J. E. Desnoyers, and A. Hade,Can. J. Chem. 51, 187 (1973).Google Scholar
  6. 6.
    D. B. Wetlaufer, S. K. Malik, L. Stoller, and R. L. Coffin,J. Am. Chem. Soc. 86, 508 (1964).Google Scholar
  7. 7.
    P. L. Whitney and C. Tanford,J. Biol. Chem. 237, 1735 (1962); Y. Nozaki and C. Tanford,J. Biol. Chem. 238, 4074 (1963).Google Scholar
  8. 8.
    G. C. Kresheck and L. Benjaman,J. Phys. Chem. 68, 2476 (1964); W. A. Hargreaves and G. C. Kresheck,J. Phys. Chem. 73, 3249 (1969).Google Scholar
  9. 9.
    F. Franks and D. L. Clarke,J. Phys. Chem. 71, 1155 (1967).Google Scholar
  10. 10.
    T. S. Sarma and J. C. Ahluwalia,J. Phys. Chem. 76, 1366 (1972).Google Scholar
  11. 11.
    R. B. Cassel and W. Y. Wen,J. Phys. Chem. 76, 1369 (1972).Google Scholar
  12. 12.
    B. Chawla, S. Subramanian, and J. C. Ahluwalia,J. Chem. Thermodyn. 4, 575 (1972).Google Scholar
  13. 13.
    J. C. Ahluwalia and B. Chawla,J. Chem. Soc., Faraday Trans. 1 69, 434 (1973).Google Scholar
  14. 14.
    M. Abu-Hamidayyah,J. Phys. Chem. 69, 2720 (1965).Google Scholar
  15. 15.
    C. V. Krishnan and H. L. Friedman,J. Phys. Chem. 73, 1572 (1969).Google Scholar
  16. 16.
    B. E. Conway and L. H. Laliberté,Trans. Faraday Soc. 66, 3032 (1970).Google Scholar
  17. 17.
    P. R. Philip and J. E. Desnoyers,J. Solution Chem. 1, 353 (1972).Google Scholar
  18. 18.
    R. J. Irving and I. Wadsö,Acta Chem. Scand. 18, 195 (1964).Google Scholar
  19. 19.
    G. Somsen, J. Coops, and M. W. Tolk,Rec. Trav. Chim. 82, 231 (1963).Google Scholar
  20. 20.
    M. J. Mastroianni and C. M. Criss,J. Chem. Eng. Data 17, 222 (1972);J. Chem. Thermodyn. 4, 321 (1972).Google Scholar
  21. 21.
    J. Wyman,J. Am. Chem. Soc. 55, 4116 (1933).Google Scholar
  22. 22.
    F. T. Gucker, F. W. Gage, and C. E. Moser,J. Am. Chem. Soc. 60, 2582 (1938).Google Scholar
  23. 23.
    C. V. Krishnan and H. L. Friedman,J. Phys. Chem. 74, 2356 (1970).Google Scholar
  24. 24.
    P. Picker, P. A. Leduc, P. R. Philip and J. E. Desnoyers,J. Chem. Thermodyn. 3, 631 (1971).Google Scholar

Copyright information

© Plenum Publishing Corporation 1976

Authors and Affiliations

  • R. E. Verrall
    • 1
  • L. W. Dickson
    • 1
  1. 1.Department of Chemistry and Chemical EngineeringUniversity of SaskatchewanSaskatoonCanada

Personalised recommendations