Colloid and Polymer Science

, Volume 269, Issue 11, pp 1140–1147 | Cite as

Bioactive polymers 67: isosorbide dinitrate retardation in xanthan-based hydrogels

  • S. Dumitriu
  • M. Dumitriu
  • C. Matian
Original Contributions

Abstract

Xanthan and its crosslinked beads have many biomedical applications. Xanthan has been reticulated with epichlorohydrin, thus becoming a hydrogel with a swelling ratio in the range 1–10 and having a solvent content of 80–90%. Through its diffusion from alcohol/water mixture (5/1–5/4,v/v) of various concentrations, isosorbide dinitrate has been inserted into the hydrogel. The content of isosorbide dinitrate in the hydrogel varies in the range 40–150 mg/g. The drug is released according to “zero-order” kinetics at a constant rate of 1.5 μg/h, for a duration of 9 h.

Key words

Hydrogel reticulatedxanthan isosorbidedinitrateretardation 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Greidanus PJ, Van Veldhuizen GJ (1985) Proceed Intern Symp Control Rel Bioact Mater 12:77Google Scholar
  2. 2.
    Hosaka S, Ozawa H, Tanzawa H (1979) J Appl Polym Sci 23:2089Google Scholar
  3. 3.
    Amidon GL, Kou JH, Lee PI (1985) Proceed Intern Symp Control Rel Bioact Mater 12:21Google Scholar
  4. 4.
    Al-Khamis KI, Davis SS, Hadgraft J (1986) Pharm Res 3:214Google Scholar
  5. 5.
    Wichterle O, Lim D (1960) Nature 85:117Google Scholar
  6. 6.
    Refojo MF (1980) In: Szycher M, Robinson JW (eds) Ophthalmic hydrogels in synthetic biomedical polymers concepts and applications. Technomic Publishing. Westport, Connecticut, p 171Google Scholar
  7. 7.
    Tighe BJ (1987) In: Peppas NA (ed) Hydrogels in medicine and pharmacy, Vol III; properties and applications. CRC Press, Baca Raton, Florida, p 53Google Scholar
  8. 8.
    Kost J, Langer R (1987) In: Peppas NA (ed) Hydrogels in Medicine and pharmacy, Vol III; properties and applications. CRC Press, Boca Raton, Florida, p 95Google Scholar
  9. 9.
    Yoshida M, Kumakura M, Kaetsu I (1980) J Macromol Sci Chem A 14:555Google Scholar
  10. 10.
    Ishihara K, Kobayashi M, Ishimaru N, Shinohara I (1984) Polym J 16:625Google Scholar
  11. 11.
    Merril EW, Pekala RW, Mahmud NA (1987) In: Peppas NA (ed) Hydrogels in medicine and pharmacy, Vol III; properties and applications. CRC Press, Boca Raton, Florida, p 1Google Scholar
  12. 12.
    Selton MV (1987) In: Peppas NA (ed) Hydrogels in medicine and pharmacy, Vol III; properties and applications. CRC Press, Boca Raton, Florida, p 16Google Scholar
  13. 13.
    Rouel SH, D'Andrea MJ (1983) Biomed Mater Res 17:855Google Scholar
  14. 14.
    Shalaby SW, Hoffman AS, Ratner BD, Herbertt T (1986) Polymers as biomaterials. Plenum, New York, p 323Google Scholar
  15. 15.
    Yasuda H, Gouchin M, Stone W (1966) J Polym Sci (A-1) 4:2913Google Scholar
  16. 16.
    Ratner BD, Weathersby PK, Hoffman AS, Kelly MA, Scharpen LH (1978) J Appl Polym Sci 22:643Google Scholar
  17. 17.
    Refojo MF, Leong FL (1981) J Biomed Mater Res 15:497Google Scholar
  18. 18.
    Kolarik J, Migliaresi C (1983) J Biomed Mater Res 17:757Google Scholar
  19. 19.
    Lee PI (1985) Proceed Intern Symp Control Rel Bioact Mater 12:139Google Scholar
  20. 20.
    Rassing J, McKenna WP, Bandyopadhyay S, Eyring EM (1984) J Mol Liquid 27:165Google Scholar
  21. 21.
    Hoblitzell JR, Rhodes CT (1990) Drug Dev Ind Pharmacy 16:201Google Scholar
  22. 22.
    Chattaraj SC, Das SK (1990) Drug Dev Ind Pharmacy 16:283Google Scholar
  23. 23.
    Schroeder HG, Dakkuri A, Deluca PP (1978) J Pharm Sci 67:350Google Scholar
  24. 24.
    Georgarakis M, Panagopoulou A, Hatzipantou P, Iliopoulos Th, Kondylis M, Grekas D (1990) Drug Dev Ind Pharmacy 16:315Google Scholar
  25. 25.
    Schröder U, Gannholt G, Nyberg G, Eriksson H (1985) Proceed Intern Symp Control Rel Bioact Mater 12:332Google Scholar
  26. 26.
    Carli F, Colombo I, Torricelli C (1987) Chimica Oggi 5:61Google Scholar
  27. 27.
    Corrigan O, Stanley C (1982) J Pharm Pharmac 34:621Google Scholar
  28. 28.
    Simionescu Cr, Popa MI, Dumitriu S (1986) Bull Soc Chim Belge 95:283Google Scholar
  29. 29.
    Dumitriu S, Popa M, Beldie C (1988) Macromol Chem 19:313Google Scholar
  30. 30.
    Pitha J, Kusiak JW, Milecki J (1983) Fed Proceedings 42:279Google Scholar
  31. 31.
    Dumitriu S, Popa M, Dumitriu M (1989) J Bioact Comp Polym 4:151Google Scholar
  32. 32.
    Dumitriu S, Popa M, Dumitriu D (1989) Patent Rom No97692 Google Scholar
  33. 33.
    Dumitriu S, Vancea P, Costin D, Popa M (1987) Clinical Materials 2:141Google Scholar
  34. 34.
    Dumitriu S, Dumitriu M, Teacâ G (1990) Clinical Materials 6:265Google Scholar
  35. 35.
    Dumitriu S, Dumitriu M, Biomaterials (in press)Google Scholar
  36. 36.
    Dumitriu S, Popa MI, Hâulicâ I, Crîngu A, Stratone A (1989) Colloid Polym Sci 267:595Google Scholar
  37. 37.
    Stroescu V (1988) Bazele Farmacologice al Practicii Medicale 1:276Google Scholar
  38. 38.
    Kydonieus AF (1984) Proceed Intern Symp Control Rel Bioact Mat 12:32Google Scholar
  39. 39.
    Wang PY (1987) Clin Mater 2:91Google Scholar
  40. 40.
    Kydonieus AF (1977) am Chem Soc Controlled Release Pesticide Symposium, New Orleans, La, USAGoogle Scholar

Copyright information

© Steinkopff-Verlag 1991

Authors and Affiliations

  • S. Dumitriu
    • 1
  • M. Dumitriu
    • 1
  • C. Matian
    • 1
  1. 1.Department of Macromolecular ChemistryPolytechnic Institute of JassyJassyRomania

Personalised recommendations