Advertisement

Solar Physics

, Volume 151, Issue 1, pp 177–190 | Cite as

The shape of the sunspot cycle

  • David H. Hathaway
  • Robert M. Wilson
  • Edwin J. Reichmann
Article

Abstract

The temporal behavior of a sunspot cycle, as described by the International sunspot numbers, can be represented by a simple function with four parameters: starting time, amplitude, rise time, and asymmetry. Of these, the parameter that governs the asymmetry between the rise to maximum and the fall to minimum is found to vary little from cycle to cycle and can be fixed at a single value for all cycles. A close relationship is found between rise time and amplitude which allows for a representation of each cycle by a function containing only two parameters: the starting time and the amplitude. These parameters are determined for the previous 22 sunspot cycles and examined for any predictable behavior. A weak correlation is found between the amplitude of a cycle and the length of the previous cycle. This allows for an estimate of the amplitude accurate to within about 30% right at the start of the cycle. As the cycle progresses, the amplitude can be better determined to within 20% at 30 months and to within 10% at 42 months into the cycle, thereby providing a good prediction both for the timing and size of sunspot maximum and for the behavior of the remaining 7–12 years of the cycle.

Keywords

Solar Phys Sunspot Number Previous Cycle Sunspot Cycle Solar Dynamo 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Brunner, W.: 1943,Publ. Zürich Obs. 7, 42.Google Scholar
  2. Eddy, J. A.: 1976,Science 192, 1189.ADSGoogle Scholar
  3. Elling, W. and Schwentek, H.: 1992,Solar Phys. 137, 155.CrossRefADSGoogle Scholar
  4. Giovanelli, R. G.: 1964,The Observatory 84, 57.ADSGoogle Scholar
  5. Layden, A. C., Fox, P. A., Howard, J. M., Sarajendini, A., Schatten, K. H., and Sofia, S.: 1991,Solar Phys. 132, 1.CrossRefADSGoogle Scholar
  6. Maunder, E. W.: 1922,Brit. Astron. Assoc. J. 32, 140.Google Scholar
  7. McKinnon, J. A.: 1987,Report UAG-95, World Data Center A for Solar-Terrestrial Physics, Boulder, Colorado, 112 pp.Google Scholar
  8. Meadows, A. J.: 1970,Early Solar Physics, Pergamon Press, New York, p. 95Google Scholar
  9. Nordemann, D. J. R.: 1992,Solar Phys. 141, 199.CrossRefADSGoogle Scholar
  10. Nordemann, D. J. R. and Trivedi, N. B.: 1992,Solar Phys. 142, 411.CrossRefADSGoogle Scholar
  11. Press, W. H., Flannery, B. P., Teukolsky, S. A., and Vetterling, W. T.: 1986,Numerical Recipes, Cambridge University Press, Cambridge, 818 pp.Google Scholar
  12. Schatten, K. H., Scherrer, P. H., Svalgaard, L., and Wilcox, J. M.: 1978,Geophys. Res. Letters 5, 411.ADSGoogle Scholar
  13. Shove, D. J.: 1983,Sunspot Cycles, Hutchinson Ross Publ., Stroudsberg, Pennsylvania, p. 81.Google Scholar
  14. Waldmeier, M.: 1935,Astron. Mitt. Zürich 14 (No. 133), 105.Google Scholar
  15. Waldmeier, M.: 1939,Astron. Mitt. Zürich 14 (No. 138), 470.Google Scholar
  16. Waldmeier, W.: 1961,The Sunspot Activity in the Years 1610–1960, Schulthess and Co., Zürich, 171 pp.Google Scholar
  17. Wilson, R. M.: 1984,NASA TM 86458, Huntsville, Alabama, 43 pp.Google Scholar
  18. Wilson, R. M.: 1987,J. Geophys. Res. 92(A9), 10101.ADSGoogle Scholar
  19. Wilson, R. M.: 1988,J. Geophys. Res. 93(A9), 10011.ADSGoogle Scholar
  20. Wilson, R. M.: 1992,Solar Phys. 140, 181.CrossRefADSGoogle Scholar
  21. Wolf, R.: 1852,Acad. Sci. Compt. Rend. 35, 704.Google Scholar

Copyright information

© Kluwer Academic Publishers 1994

Authors and Affiliations

  • David H. Hathaway
    • 1
  • Robert M. Wilson
    • 1
  • Edwin J. Reichmann
    • 1
  1. 1.Space Science LaboratoryNASA Marshall Space Flight CenterHuntsvilleUSA

Personalised recommendations