Skip to main content
Log in

Noise thermometry at ultralow temperatures

  • Published:
Journal of Low Temperature Physics Aims and scope Submit manuscript

Abstract

The mean square Johnson noise currents flowing in a low-temperature seriesL–R circuit are used to measure absolute temperatures in a new method using an rf-biased superconducting magnetometer. In one set of experiments a quantitative study was made of the noise currents in a beryllium copper resistor located in the mixing chamber of a dilution refrigerator in the temperature range 5.4 mK to 4.2 K as a function of the magnetic temperature determined from measurements of the static magnetization of powdered CMN. In this temperature range the measured mean square noise current is found to be linearly proportional toT* with a coefficient which agrees within the experimental accuracy of±3 % with the theoretically predicted value based on the N yquist relation and independent measurements of all necessary calibration factors. A model for a SQUID operated in the flux-locked loop configuration with a partly resistive input circuit is presented and is used in the determination of the “device noise” temperature, which for the above experiment is found to be 0.16±0.02 mK. A calculation is presented of the length of time necessary to average the output of our thermometer in order to achieve any desired precision in the estimation of the mean square Johnson noise currents, and a comparison with the observed precision is made. In a second set of experiments the relationship between the Johnson noise temperature of a copper resistor and the 16-Hz magnetic temperature of two powdered paramagnetic salts, CMN and CDP, each in the shape of a right-circular cylinder with diameter equal to height, located in an adiabatic demagnetization cell, was determined from 2 to 20 mK. The device noise temperature characterizing the measuring system for these experiments was measured to be ∼0.05 mK. A discussion of the possible sources of inaccuracy associated with Johnson noise thermometry is presented. Particular attention is paid to the possibility of a heat leak directly to the noise resistor.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R. A. Kamper and J. E. Zimmerman,J. Appl. Phys. 42, 132 (1971).

    Google Scholar 

  2. R. A. Kamper, J. D. Siegwarth, R. Radebaugh, and J. E. Zimmerman,IEEE Proc. 59, 1368 (1971).

    Google Scholar 

  3. R. P. Giffard, R. A. Webb, and J. C. Wheatley,J. Low Temp. Phys. 6, 533 (1972).

    Google Scholar 

  4. R. J. Soulen, Jr. and H. Marshak, inProc. 1972 Appl. Superconductivity Conference, Annapolis, Md.

  5. H. Marshak and R. J. Soulen, Jr., inLow Temperature Physics LT-13 (`Proc. 13th Int. Conf. Low Temp. Physics, Boulder) (Plenum, New York, 1973).

    Google Scholar 

  6. H. Nyquist,Phys. Rev. 32, 110 (1928).

    Google Scholar 

  7. Burr-Brown Research Corp,Operational Amplifiers—Design and Applications (McGraw-Hill, New York, 1971), p. 296.

    Google Scholar 

  8. A. C. Mota,Rev. Sci. Instr. 42(10), 1541 (1971).

    Google Scholar 

  9. J. Kurkijärvi and W. W. Webb, inProc. 1972 Appl. Superconductivity Conf., Annapolis, Md.

  10. Juhani Kurkijärvi and W. W. Webb, Office of Naval Research, NR 319-032, Technical Report #8 (1972).

  11. S. O. Rice,J. Acoust. Soc. Am. 14, 216 (1943).

    Google Scholar 

  12. S. O. Rice,Bell System Techn. J. 24, 46 (1945).

    Google Scholar 

  13. J. C. Doran, U. Erich, and W. P. Wolf,Phys. Rev. Letters 28, 103 (1972).

    Google Scholar 

  14. W. R. Abel, R. T. Johnson, J. C. Wheatley, and W. P. Wolf,Phys. Rev. Letters 28, 103 (1972).

    Google Scholar 

  15. W. R. Abel, R. T. Johnson, J. C. Wheatley, and W. Zimmerman,Phys. Rev. Letters 18, 737 (1967).

    Google Scholar 

  16. W. R. Abel and J. C. Wheatley,Phys. Rev. Letters 21, 597 (1968).

    Google Scholar 

  17. J. H. Bishop, D. W. Cutter, A. C. Mota, and J. C. Wheatley,J. Low Temp. Phys. 10, 379 (1973).

    Google Scholar 

  18. W. C. Black, A. C. Mota, J. C. Wheatley, J. H. Bishop, and P. M. Brewster,J. Low Temp. Phys. 4, 391 (1971).

    Google Scholar 

  19. A. J. Leggett and M. Vuorio,J. Low Temp. Phys. 3, 359 (1970).

    Google Scholar 

  20. W. R. Abel, A. C. Anderson, W. C. Black, and J. C. Wheatley,Phys. Rev. 147, 111 (1966).

    Google Scholar 

  21. R. A. Fisher, E. W. Hornung, G. E. Brodale, and W. F. Giauque, to be published.

  22. R. A. Webb, R. P. Giffard, and J. C. Wheatley,Phys. Lett. 41A, 1 (1972).

    Google Scholar 

  23. R. A. Webb and J. C. Wheatley,Phys. Rev. Lett. 29, 1150 (1972).

    Google Scholar 

  24. J. H. Bishop and A. C. Mota, to be published inPhys. Letters.

  25. R. T. Johnson, D. N. Paulson, C. B. Pierce, and J. C. Wheatley,Phys. Rev. Letters 30, 207 (1973).

    Google Scholar 

  26. D. D. Osheroff, W. J. Gully, R. C. Richardson, and D. M. Lee,Phys. Rev. Letters 29, 1227 (1972).

    Google Scholar 

  27. R. T. Johnson, O. V. Lounasmaa, R. Rosenbaum, O. G. Symko, and J. C. Wheatley,J. Low Temp. Phys. 2, 403 (1970).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Work supported by the U.S. Atomic Energy Commission under Contract No. AT(04-3)-34, P.A. 143.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Webb, R.A., Giffard, R.P. & Wheatley, J.C. Noise thermometry at ultralow temperatures. J Low Temp Phys 13, 383–429 (1973). https://doi.org/10.1007/BF00654076

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00654076

Keywords

Navigation