Skip to main content
Log in

Scattering of light by thermal ripplons on superfluid helium

  • Published:
Journal of Low Temperature Physics Aims and scope Submit manuscript

Abstract

It is well known that thermally excited waves on the free surface of a liquid can cause light to be diffusely scattered. In order to investigate the possible effects of the superfluid transition in liquid helium, we have measured the intensity of the surface scattering from the free surface of liquid helium as a function of temperature (1.3–2.1 K) and as a function of the scattering angle. The surface was illuminated vertically from above with a He-Ne laser. A measuring technique was devised which could not only distinguish among background scattering, scattering from the bulk liquid, and scattering from the surface, but could determine the ratio of surface to bulk scattering also. We have found that our results can be described by the theory of Mandelshtam, which is valid for classical liquids. According to this theory, the surface-scattered intensity is given by the ratio of temperature to surface tension. The angular dependence is determined by the characteristic wave vector dependence of the mean square amplitude of the fluctuations. The ratio between surface- and bulk-scattered intensity is calculated on the basis of the classical theory. The data indicate that in the frequency range around about 1 MHz no influence of the two-fluid nature of the superfluid is detectable.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. T. Davies and E. K. Rideal,Interfacial Phenomena (Academic Press, New York, 1961), p. 267.

    Google Scholar 

  2. M. A. Bouchiat and J. Meunier,Polarisation, matière et rayonnement, volume jubilaire en l'honneur d'Alfred Kastler (Presses universitaire de France, 1969), p. 121; R. H. Katyl and K. U. Ingard,In honor of Philip M. Morse (MIT Press, Cambridge, Massachusetts and London, England, 1969), p. 70; J. Adin Mann, J. F. Baret, F. R. Dechow, and R. S. Hansen,J. Coll. Interf. Sci. 37, 14 (1971); and references cited therein.

  3. M. A. Bouchiat and J. Meunier,Phys. Rev. Lett. 23, 752 (1969).

    Google Scholar 

  4. J. Zollweg, G. Hawkins, and G. B. Benedek,Phys. Rev. Lett. 27, 1182 (1971).

    Google Scholar 

  5. R. H. Katyl and U. Ingard,Phys. Rev. Lett. 20, 248 (1968).

    Google Scholar 

  6. V. G. Levich,Physiochemical Hydrodynamics (Prentice-Hall, New York, 1962), p. 603.

    Google Scholar 

  7. K. R. Atkins and J. Rudnick,Progress in Low Temperature Physics, Vol. 6 (North-Holland Publishing Company, Amsterdam, 1970), p. 37.

    Google Scholar 

  8. J. M. Khalatnikov,An Introduction to the Theory of Superfluidity (Benjamin, New York, 1965), p. 90.

    Google Scholar 

  9. J. Seiden,Compt. Rend. 275, Ser. B, 713 (1972).

    Google Scholar 

  10. K. A. Pickar and K. R. Atkins,Phys. Rev. 178, 399 (1969).

    Google Scholar 

  11. P. J. King and A. F. G. Wyatt,Proc. Roy. Soc. London,A322, 355 (1971).

    Google Scholar 

  12. S. Cunsolo and G. Jacucci, inLow Temperature Physics LT-13 (Proc. 13th Int. Conf. Low Temp. Physics, Boulder, 1972) (Plenum, New York, 1973).

    Google Scholar 

  13. K. R. Atkins,Can. J. Phys. 31, 1165 (1953).

    Google Scholar 

  14. F. Wagner,Phys. Lett. 42A, 265 (1972).

    Google Scholar 

  15. E. J. Walker,Rev. Sci. Instr. 30, 834 (1959).

    Google Scholar 

  16. C. Boyhosian, H. Meyer, and J. E. Rives,Phys. Rev. 146, 110 (1966); G. T. van Degriff, inLow Temperature Physics LT-13 (Proc. 13th Int. Conf. Low Temp. Physics, Boulder, 1972) (Plenum, New York, 1973).

    Google Scholar 

  17. H. Grimm and K. Dransfeld,Z. Naturforsch. 22a, 1629 (1967); W. Flossmann, Diplomarbeit, Phys. Dept. Techn. Univ. München (1970), unpublished.

    Google Scholar 

  18. K. R. Atkins and Y. Narahara,Phys. Rev. 138, A437 (1965).

  19. L. J. Mandelshtam,Ann. Physik 41, 609 (1913).

    Google Scholar 

  20. R. Gans,Ann. Phys. 74, 231 (1924);79, 204 (1926).

    Google Scholar 

  21. A. Andronov and M. Leontovicz,Z. Physik 38, 485 (1926).

    Google Scholar 

  22. A. Vrij,Adv. Coll. Interf. Sci. 2, 39 (1968).

    Google Scholar 

  23. L. D. Landau and E. M. Lifshitz,Statistical Physics (Pergamon Press, London, Paris, 1969), p. 351.

    Google Scholar 

  24. P. Beckmann and A. Spizzichino,The Scattering of Electromagnetic Waves from Rough Surfaces (Pergamon Press, Oxford, 1963).

    Google Scholar 

  25. C. E. Chase and E. Maxwell,Physica 27, 1129 (1961).

    Google Scholar 

  26. E. L. Fabilinskii,The Molecular Scattering of Light (Plenum Press, New York, 1968).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wagner, F. Scattering of light by thermal ripplons on superfluid helium. J Low Temp Phys 13, 317–330 (1973). https://doi.org/10.1007/BF00654070

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00654070

Keywords

Navigation