Journal of Low Temperature Physics

, Volume 13, Issue 3–4, pp 211–226 | Cite as

Thermodynamic properties of superconducting iridium

  • D. U. Gubser
  • R. J. SoulenJr.


The superconducting transition temperature of pure Ir is found to be 0.1125 K (±0.0005 K). The critical magnetic field as a function of temperatureHc(T) has also been measured. From these data it is determined thatHc(0) is 16.00 G (1 G corresponds to 10−4 T), (dHc/dT)T=Tc is 235 G/K, the linear coefficient of normal state electronic specific heat γ is 3.19 mJ/mole-K2, and the energy gap anisotropy parameter 〈a2〉 is 0.048. This value for 〈a2〉 is the largest of any superconducting element so far observed, and its significance in determining the superconducting properties of Ir is discussed. By using the large supercooling effects noticed nearTc, the Ginzburg-Landau parameter x0 is found to be 8.6×10−3. The effects of impurities onTc and on the magnetic behavior of Ir are also discussed.


Magnetic Field Anisotropy Transition Temperature Thermodynamic Property Magnetic Material 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    R. A. Hein, J. W. Gibson, B. T. Matthias, T. H. Geballe, and E. Corenzwit,Phys. Rev. Letters 8, 408 (1962).Google Scholar
  2. 2.
    K. Andres and M. A. Jensen,Phys. Rev. 165, 533 (1968).Google Scholar
  3. 3.
    W. Wejgaard,Physics Letters 29A, 396 (1969).Google Scholar
  4. 4.
    G. P. Riblet, Thesis, Univ. of Pennsylvania (unpublished).Google Scholar
  5. 5.
    J. F. Schooley, R. J. Soulen, Jr., and G. A. Evans, Jr., NBS Special Publication 260-44 (1972).Google Scholar
  6. 6.
    D. U. Gubser and L. D. Jones,Rev. Sci. Insir. 43, 943 (1972).Google Scholar
  7. 7.
    D. U. Gubser and D. E. Mapother,Rev. Sci. Instr. 40, 843 (1969).Google Scholar
  8. 8.
    S. Hörnfeldt, A. Hammarström, K. Carrander, and B. Björck,J. Phys. Chem. Solids 32, 753 (1970).Google Scholar
  9. 9.
    R. A. Hein and R. L. Falge, Jr.,Phys. Rev. 123, 407 (1961).Google Scholar
  10. 10.
    W. C. Black, R. T. Johnson, and J. C. Wheatley,J. Low Temp. Phys. 1, 641 (1969).Google Scholar
  11. 11.
    J. R. Clem,Phys. Rev. 153, 449 (1967).Google Scholar
  12. 12.
    D. U. Gubser,Phys. Rev. B 6, 827 (1972).Google Scholar
  13. 13.
    J. R. Clem,Ann. of Phys. 40, 268 (1966).Google Scholar
  14. 14.
    G. T. Furukawa, M. L. Reilly, and J. S. Gallagher,J. Phys. Chem. Ref. Data (to be published).Google Scholar
  15. 15.
    D. Markowitz and L. P. Kadanoff,Phys. Rev. 131, 563 (1963).Google Scholar
  16. 16.
    P. G. DeGennes,Superconductivity of Metals and Alloys (W. A. Benjamin, New York, 1966), Chapter 6.Google Scholar
  17. 17.
    R. R. Hake,Phys. Rev. 158, 356 (1967).Google Scholar
  18. 18.
    S. P. Hornfeldt, L. R. Windmiller, and J. B. Ketterson,Phys. Rev. (to be published).Google Scholar
  19. 19.
    B. B. Goodman,IBM J. Res. Develop. 6, 63 (1962).Google Scholar
  20. 20.
    N. F. Berk and J. R. Schrieffer,Phys. Rev. Letters 17, 433 (1966).Google Scholar

Copyright information

© Plenum Publishing Corporation 1973

Authors and Affiliations

  • D. U. Gubser
    • 1
  • R. J. SoulenJr.
    • 1
  1. 1.Naval Research LaboratoryWashington, D.C.

Personalised recommendations