Skip to main content
Log in

Disjoining pressure and stratification in asymmetric thin-liquid films

  • Original Contribution
  • Published:
Colloid and Polymer Science Aims and scope Submit manuscript

Abstract

We directly measure, for the first time, disjoining pressure isotherms for asymmetric oil/aqueous surfactant/gas (i.e., pseudoemulsion) films using a modified version of the porous-plate technique first developed by Mysels in conjunction with thin-film interferometry. Dynamic film-thinning experiments are also performed on individual foam and pseudoemulsion films. At SDS surfactant concentrations above the critical micelle concentration (CMC) (0.1 M SDS), the pesudoemulsion films exhibit the same step-wise layer thinning observed in foam films under similar conditions. Further, we conduct dynamic thinning experiments on solid/liquid/gas systems and show that aqueous 0.2 M CTAB films sandwiched between glass and air also display discrete thinning transitions. All of these stratification transitions arise from oscillations in the disjoining pressure isotherm, generated by amphiphilic structuring within the film.

For 0.1 M SDS dedecane/air pesudoemuslion films, the slope and peak height of the disjoining-pressure oscillations increase with each subsequent amphiphilic layer as film thickness decreases. Magnitudes of the structural forces are low (<100 Pa) but the length scale of the oscillations is large (∼10 nm) and rathe far reaching (∼50 nm). Moreover, for 0.1 M SDS solutions, the capillary pressures associated with film rupture are significantly lower for pseudoemulsion films (∼0.1 kPa) when compared to foam films (∼15 kPa) at equivalent conditions. Taken together, our dynamic thinning and equilibrium disjoining pressure measurements indicate that stratification in 0.1 M SDS films has little effect on both kinetic and thermodynamic films stability.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Derjaguin BV, Churaev NV, Muller VM (1987) In: Kitchener JA (ed.) Surface forces. Consultants Bureau New York

    Google Scholar 

  2. Scheludko A (1967) Advan Colloid Interface Sci 1:391–464

    Google Scholar 

  3. Bergeron V, Radke CJ (1992) Langmuir 8:3020–3026

    Google Scholar 

  4. Richetti P, Kékicheff P (1992) Phys. Rev Let 68 No. 12, 1951–1954

    Google Scholar 

  5. Wasan DT, Nikolov AD, Huang DD, Edwards DA (1988) In: Smith ed. Surfactant Based Mobility Control — Progress in Miscible-Food Enhanced Oil, Recovery ACS Symp. Series 373 American Chemical Society Washington D.C. Chapter 7: 136–162

    Google Scholar 

  6. Manlowe DJ, Radke CJ (1990) Soc. Petroleum Eng. Reservior Eng 5 No. 4, 495–502

    Google Scholar 

  7. Bergeron V, Fagan ME, Radke CJ, (1993) Langmuir 9, No. 7, 1704–1713

    Google Scholar 

  8. Kurglyakov PA (1988) In: I.B. Ivanov, ed., Thin Liquid Films — Fundamentals and Applications, Marcell Dekker Inc., New York, Chapter 11, 767–827

    Google Scholar 

  9. Koczo K, Lobo LA, Wasan DT, (1992) J Colloid Int Sci 150 No. 2, 492–506

    Google Scholar 

  10. Bergeron, V Radke CJ (1991) In: Proceedings of the 6th Research Conference on Exploration — Production, Physical Chemistry of Colloids and Interfaces in Oil Production, Saint-Raphaël France, Editions Technip, Paris.

    Google Scholar 

  11. Mysels KJ, and Jones MN (1966) Discuss Faraday Soc 42:42–50

    Google Scholar 

  12. Exerowa D, Kolarov T, Kristov KHR (1987) Colloids and Surf 22: 171–185 (1987)

    Google Scholar 

  13. Bergeron V (1993) Ph D Thesis, University of Calofornia Berkeley California

  14. Scheludko A (1957) Kolloid Zeit 155:39–44

    Google Scholar 

  15. Duyvis EM (1962) Thesis, Utrecht

  16. Muramatsu M, Inoue M (1976) J Colloid Interface Soc 55:80–84

    Google Scholar 

  17. Johonnott ES (1906) Phil Mag, 11:746–753

    Google Scholar 

  18. Perrin J (1918) Ann Phys 10:160–184

    Google Scholar 

  19. Rickenbacher W (1916) Kolloid Chem Beihefte 8:139–170

    Google Scholar 

  20. Wells PV (1921) Ann Phys 16:69–110

    Google Scholar 

  21. Dewar J, (1927) in: L. Dewar, ed. Collected Papers of Sir James Dewar Vol. II Cambridge, 1170–1172

  22. Bruil HG, Lyklema J (1971) J. Nature Phys Sci 233:19–20

    Google Scholar 

  23. Friberg S, Linden E, Saito H (1974) Nature 251:494–495

    Google Scholar 

  24. Keuskamp JW, Lyklema J (1975) In: Mittal KL ed. Adsoprtion at Interfaces ACS Symposium Series 8 Washington DC 191-198

  25. Manev E, Proust JE, Ter-Minassian-Saraga, (1977) Colloid and Polymer Sci 255:1133–1135

    Google Scholar 

  26. Manev ED, Sazdanova SV, Rao AA, Wasan DT (1982) J Dispersion Sci and Technol 3:435–463

    Google Scholar 

  27. Nikolov AD, Wasan DT (1989) J Colloid Interface Sci 133:1–12

    Google Scholar 

  28. Nikolov AD, Wasan DT, Denkov ND, Kralchevsky PA, Ivanov IB (1990) Progr Colloid Polym Sci 82:87–98

    Google Scholar 

  29. Manev ED, Sazdanova SV, Wasan DT (1984) 5:111–117

  30. Bergeron V, Radke CJ (1991) In: Toulhoat H, Lecourtier J (eds) Proceedings of the 6th Research Conference on Exploration-Production, Physical Chemistry of Colloids and Interfaces in Oil Production, Editions Techinip Pairs Vol 1.

    Google Scholar 

  31. Wasan DT, Nikolov AD, Kralchevsky PA, Ivanov IB (1992) Colloids and Surfaces, 67:139–145

    Google Scholar 

  32. Bergeron V, Miménez-Laguna AI, Radke CJ (1993) Langmuir, 8:3027–3032

    Google Scholar 

  33. Scheludko A (1962) Proc Koninkl Ned Akad Wet B65:87–96

    Google Scholar 

  34. Laso M (1993) Ph D Thesis University of California Berkeley CA

  35. Scriven LE, Sternling CV (1960) Nature 187:186–188

    Google Scholar 

  36. Malhotra AK, Wasan DT (1988) In: Ivanov IB, (ed.), Thin Liquid Films-Fundamentals and Applications, Marcel Dekker: New York, Vol 29, 829–890

    Google Scholar 

  37. Lee EM, Simister EA, Thomas RK, Penfold J (1989) Colloque de Physique, 50:75–81

    Google Scholar 

  38. Exerowa D, Lalchev Z (1986) Langmuir, 2:668–671

    Google Scholar 

  39. Rehfeld S (1967) J Phys Chem, 71:38–745

    Google Scholar 

  40. Israelachvili JN (1985) In: Intermolecular and Surface Force — with Application of Colloidal and Biological Systems, Academic Press Inc, Orlando Fl: 137–159

    Google Scholar 

  41. Hirasaki GJ (1991) Soc. Petroleum Engr Formation Evaluation 6 No. 2: 217–226

    Google Scholar 

  42. Israelachvili JN, Pashley RM (1984) J Colloid Int Sci. 98, No. 2: 500–514

    Google Scholar 

  43. Khristov Kh I, Ekserova DR, Kruglyakov PM, Fokins NT (1992) Kolloidnyi Zhurnal 54 No. 1: 173–178

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bergeron, V., Radke, C.J. Disjoining pressure and stratification in asymmetric thin-liquid films. Colloid Polym Sci 273, 165–174 (1995). https://doi.org/10.1007/BF00654014

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00654014

Key words

Navigation