Colloid and Polymer Science

, Volume 273, Issue 2, pp 101–117 | Cite as

A fascinating new field in colloid science: small ligand-stabilized metal clusters and possible application in microelectronics

Part I: State of the art
  • G. Schön
  • U. Simon
Leading Contribution


Small metal clusters, like Au55(PPh3)12Cl6, which fall in the size regime of 1–2 nm are colloidal nanoparticles with quantum properties in the transitional range between metals and semiconductors. These chemically tailored quantum dots show regarding the Quantum Size Effect (QSE) a level splitting between 20 and 100 meV, increasing from small particle sizes to the molecular state. The organic ligand shell surrounding the cluster acts like a dielectric “spacer” generating capacitances between neighboring clusters down to 10−18 F. Therefore, charging effects superposed by level spacing effects can be observed. The ligand-stabilized colloidal quantum dots in condensed state can be described as a novel kind of artificial solid with extremely narrow mini or hopping bands depending on the chemically adjustable thickness of the ligand shell and its properties. Since its discovery, the Single Electron Tunneling (SET) effect has been recognized to be the fundamental concept for ultimate miniaturization in microelectronics. The controlled transport of charge carriers in arrangements of ligand-stabilized clusters has been observed already at room temperature through Impedance Spectroscopy (IS) and Scanning Tunneling Spectroscopy (STS). This reveals future directions with new concepts for the realization of simple devices for Single Electron Logic (SEL).

Part I presents the fundamental aspects of small ligand-stabilized metal clusters as well as their physical properties, emphasizing their electronic and optical properties with respect to dielectric response at ambient temperatures.

Key words

Ligand-stabilized metal clusters nanoparticles quantum dots single electron logic microelectronic devices 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Ostwald W (ed) (1915) Die Welt der vernachlässigten Dimension, 1. Aufl, Th Steinkopff, DresdenGoogle Scholar
  2. 2.
    Stauff J (1960) Kolloidchemie, Springer, Berlin-Göttingen-HeidelbergGoogle Scholar
  3. 3.
    Henglein A (1987) Progr Colloid Polym Sci 73:1–4Google Scholar
  4. 4.
    Brus LE (1983) J Chem Phys 79:5566; (1984) 80:4403; (1986) J Phys Chem 90:2555Google Scholar
  5. 5.
    Henglein A (1992) Labor 2000 110Google Scholar
  6. 6.
    Weller H (1993) Angew Chem 105:43–55Google Scholar
  7. 7.
    Schmid G, Pfeil R, Boese R, Bandermann F, Mayer S, Calis GHM, van der Velden JWA (1981) Chem Ber 114:3634Google Scholar
  8. 8.
    Mielke F, Houbertz R, Hartmann U, Simon U, Schön G, Schmid G (1994) Euro Phys Lett in pressGoogle Scholar
  9. 9.
    Pelster R, Marquardt P, Nimtz G, Enders A, Eifert H, Friedrich K, Petzold F (1992) Phys RevB 16:8929–8933Google Scholar
  10. 10.
    Ozin GA (1992) Adv Mater No 10 4:612–649Google Scholar
  11. 11.
    Jacobs PA, Jaeger NI, Jiru P, Schulz-Ekloff G (eds) (1982) Metal Microstructures in Zeolites, Elsevier, AmsterdamGoogle Scholar
  12. 12.
    Gügel A, Müllen K, Reichert H, Schmidt W, Schön G, Schüth F, Spikermann J, Titman J, Unger K (1993) Angew Chem No 4 105:618–619Google Scholar
  13. 13.
    Grabert H, Devoret MH (eds) (1992) Single Charge Tunneling, Plenum, New YorkGoogle Scholar
  14. 14.
    Gladun A, Zorin AB (1992) Phys i u Z No 4 23:159–165Google Scholar
  15. 15.
    Licharev KK, Claeson T (1992) Spektr d Wiss 8:62–67Google Scholar
  16. 16.
    Corcoran E (1992) Spektr d Wiss (Sonderheft 11) 1:76Google Scholar
  17. 17.
    Schmid G, Schön G, Simon U (1992) German Patent pending No 42-12220Google Scholar
  18. 18.
    Schmid G, Schön G, Simon U (1992) USA Patent pending No 08/041, 239Google Scholar
  19. 19.
    Averin DV, Korotkov AN, Licharev KK (1991) Phys Rev B 44:6199Google Scholar
  20. 20.
    Schmid G (1991) Mater Chem Phys 23:133Google Scholar
  21. 21.
    Marquardt P, Börngen L, Nimtz G, Gleiter H, Sonnberger R, Zhu J (1986) Phys Letters 114 A:39Google Scholar
  22. 22.
    Nimtz G, Marquardt P, Gleiter H (1988) J Crys Grow 86:66–71Google Scholar
  23. 23.
    Marquardt P, Nimtz G (1989) Festkörperprobleme 29:317–328Google Scholar
  24. 24.
    Simon U, Schön G, Schmid G (1993) Angew Chem Int Ed Engl No 2 32:250–254Google Scholar
  25. 25.
    Häberlen OD, Chung S-C, Rösch N (1994) Ber Bunsenges Phys Chem No 6 98:882–885Google Scholar
  26. 26.
    Gor'kov LP, Eliashberg GM (1965) Sov Phys JETP 21:940Google Scholar
  27. 27.
    Simon U, Schmid G, Schön G (1992) Mat Res Soc Symp Proc Vol 272:167–175Google Scholar
  28. 28.
    Hartmann U, Houbertz R, Mielke F, Simon U, Schön G, Schmid G (1995) to be publishedGoogle Scholar
  29. 29.
    Schmid G, private communicationGoogle Scholar
  30. 30.
    Halperin WP (1986) Rev Mod Phys Vol 58, No 3:533–603Google Scholar
  31. 31.
    Kimura K (1989) Z Phys D 11:327–332Google Scholar
  32. 32.
    Averin AV, Licharev KK (1985) Proceedings of the Third International Conference on Superconducting Quantum Devices (SQUID's), Berlin, 197; (1986) J Low Temp Phys 62:345Google Scholar
  33. 33.
    Licharev KK, Zorin AB (1985) J Low Temp Phys 59:347Google Scholar
  34. 34.
    Fulton TA, Dolan GJ (1987) Phys Rev Lett 59:109Google Scholar
  35. 35.
    Millikan RA (1909); see e.g. Wedler G (1982) Lehrbuch der Physikalischen Chemie, Verlag Chemie, WeinheimGoogle Scholar
  36. 36.
    Fuchs K (1938) Proc Cambridge Phil Soc 34:100Google Scholar
  37. 37.
    Schön G (1994) Spektr d Wiss 4:22–24Google Scholar
  38. 38.
    Echt O, Sattler K, Recknagel E (1981) Phys Rev Lett 47:1127Google Scholar
  39. 39.
    Ozin GA, Mitchell SA (1983) Angew Chem 95:706Google Scholar
  40. 40.
    e.g. (1992) Ber Bunsenges Phys Chem No 9 96, Special Issue on Reactions in and with ClustersGoogle Scholar
  41. 41.
    Cohen ML (1986) Proc 1st NEC Symp. Hakone and Kawasaki, Japan, p 2–10Google Scholar
  42. 42.
    Schmid G (1992) Chem Rev 92:1709–1727; Schmid G (ed) (1994), VCH, Weinheim (Germany)Google Scholar
  43. 43.
    Schmid G, Lehnert A, Malm J-O, Bovin J-O (1991) Angew Chem Int Ed Engl 30:852Google Scholar
  44. 44.
    Ozin GA, Steele M (1992) Proc 9th Int Zeolite Assoc Conf, Montreal; Ozin GA, Özkar S (1992) Chem Mater 4, 551Google Scholar
  45. 45.
    Kawi S, Gates BC in Schmid G (ed) (1994), VCH, Weinheim (Germany)Google Scholar
  46. 46.
    Breck DW (1974) Zeolite Molecular Sieves, John Wiley & Sons, New YorkGoogle Scholar
  47. 47.
    Exner D, Jaeger NI, Kleine A, Schulz-Ekloff G (1988) J Chem Faraday Trans. 84(11):4097–4104Google Scholar
  48. 48.
    Blatter F, Blazey KW (1990) IBM Research Report, ZürichGoogle Scholar
  49. 49.
    Sradanov VI, Haug K, Metiu H, Stucky GD (1992) J Phys Chem 96:9039–9043Google Scholar
  50. 50.
    Edwards PP, Woodall LJ, Anderson PA, Armstrong AR, Slaski M (1993) Chem Soc Rev 305–312Google Scholar
  51. 51.
    Wang Y, Herron N, Mahler W, Suna A (1989) J Opt Soc Am B Vol 6 No 4:808–813Google Scholar
  52. 52.
    Ozin GA, Kupermann A, Stein A (1989) Angew Chem Int Ed Engl 28:359Google Scholar
  53. 53.
    Kappes M (1988) Chem Rev 86:1049Google Scholar
  54. 54.
    Smit HHA, Nugteren PP, Thiel RC, de Jongh LJ (1988) Physica B 153:33Google Scholar
  55. 55.
    Thiel RC, Benfield RE, Zanoni R, Smit HHA, Dirken MW (1993) Struct Bond 81:2–35Google Scholar
  56. 56.
    Smit HHA (1989) PhD Thesis Univ of Leiden, The NetherlandsGoogle Scholar
  57. 57.
    Goll G, Löhneysen HV, Kreibig U, Schmid G (1991) Z Phys D 12:533Google Scholar
  58. 58.
    Benfield RE, Creighton JA, Eadon DG, Schmid G (1989) Z Phys D 12:533Google Scholar
  59. 59.
    Benfield RE, O'Brien P (unpublished work)Google Scholar
  60. 60.
    de Jongh LJ, Brom HB, van Ruitenbeek JM, Thiel RC, Schmid G, Longoni G, Ceriotti A, Benfield RE, Zanoni R; Pacchioni G, Bagus PS (ed) Cluster Models for Surface and Bulk Phenomena (NATO ASI Series B) Vol 283:151–168Google Scholar
  61. 61.
    Fairbanks MC, Benfield RE, Newport RJ, Schmid G (1990) Sol St Comm 74:431Google Scholar
  62. 62.
    Marcus MA, Andrews MP, Zegenhagen J, Bommannavar AS, Montano P (1990) Phys Rev B 42:3312Google Scholar
  63. 63.
    Smit HHA, Thiel RC, de Jongh LJ, Schmid G, Klein N (1988) Sol St Com 65:915Google Scholar
  64. 64.
    Wertheim GK, Di Cenzo SB, Youngquist SE (1983) Phys Rev Lett 51:2310Google Scholar
  65. 65.
    Mason MG (1983) Phys Rev B 27:748Google Scholar
  66. 66.
    Kittel C (1976) Feskörperphysik, John Wiley & Sons, New YorkGoogle Scholar
  67. 67.
    de Jongh LJ, Baak J, Brom HB, van der Putten, van Ruitenbeek, Thiel RC (1992) Physics and Chemistry of Finite Systems: From Clusters to Crystals Vol 2:839–851Google Scholar
  68. 68.
    Longoni G, Ceriotti A, Marchionna, Piro G (1988) Surface Organometallic Chemistry, Kluver, The NetherlandsGoogle Scholar
  69. 69.
    Van Ruitenbeek JM, Jurgens MJGM, Schmid G, van Leeuven DA, Zandbergen HW, de Jongh LJ (1990) Proc 5th Symp on Small Particles and Inorganic Clusters, KonstanzGoogle Scholar
  70. 70.
    Wertheim GK (1990) Phase Transitions Vol 24–26:203–214Google Scholar
  71. 71.
    Kubo R (1962) J Phys Soc Jpn 17:975Google Scholar
  72. 72.
    van Staveren MPJ, Brom HB, de Jongh LJ (1991) Physics Reports 208:1–96Google Scholar
  73. 73.
    e.g. Jonscher AK (1883) Dielectric Relaxation in Solids, Chelsea Dielectrics Press, LondonGoogle Scholar
  74. 74.
    Macdonald JR (1987) Impedance Spectroscopy, John Wiley & Sons, New YorkGoogle Scholar
  75. 75.
    Liedermann K, Loidl A (1993) J Non-Cryst Solids 155:26–36Google Scholar
  76. 76.
    Simon U, Möhrke C (1993) Proc Meeting of the Dielectrics Society, Canterbury, UKGoogle Scholar
  77. 77.
    Blümel R (1994)) PhD Thesis University of Essen, GermanyGoogle Scholar
  78. 78.
    Zorin AB (1993) private communicationGoogle Scholar
  79. 79.
    Diot JL, Joseph J, Matin JR, Clechet P (1985) Electronanal Chem 199:75–88Google Scholar
  80. 80.
    Steggerda JJ, van der Linden JGM, Gootzen JEF (1992) Mat Res Soc Symp Proc Vol 272:127–132Google Scholar
  81. 81.
    Simon U (1992) PhD Thesis University of Essen, GermanyGoogle Scholar
  82. 82.
    Schmid G (1993) private communicationGoogle Scholar
  83. 83.
    Kreibig U, Fauth K, Granqvist C-G, Schmid G (1990) Z Phys Chem 169:11–28Google Scholar
  84. 84.
    Mott NF (1993) Conduction in Non-Crystalline Materials (2nd Ed), Clarendon Press, Oxford; and references thereinGoogle Scholar
  85. 85.
    Aspens DE (1982) Thin Solid Films 89:249Google Scholar
  86. 86.
    Foss CA, Gabor L, Hornyak L, Stickert JA, Martin CR (1993) Adv Mater 5 No 2:135–136Google Scholar

Copyright information

© Steinkopff-Verlag 1995

Authors and Affiliations

  • G. Schön
    • 1
  • U. Simon
    • 1
  1. 1.Institut für Anorganische ChemieUniversität EssenEssenGermany

Personalised recommendations