Advertisement

Astrophysics and Space Science

, Volume 115, Issue 1, pp 185–194 | Cite as

Unsteady hydromagnetic flow past a porous spherical or cylindrical surface

  • P. Hatzikonstantinou
Article
  • 31 Downloads

Abstract

The problem of unsteady hydromagnetic axial flow near the porous surface of a sphere or a cylinder is studied numerically. The fluid is considered to be electrically conducting, viscous and incompressible subjected to a magnetic field. Results are presented for the case of injected or sucked fluid with a constant velocity through the porous surfaces. The magnetic Prandtl number is set equal to one, while the magnetic Reynolds number is taken to be small enough so that the inducted magnetic field is negligible.

Keywords

Magnetic Field Reynolds Number Prandtl Number Constant Velocity Porous Surface 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bhatnagar, R. K.: 1965,Zeit. Appl. Math. Mech. 45, 389.Google Scholar
  2. Bhatnagar, R. K. and Pajagopalan, R.: 1967,Israel J. Techn. 5, 188.Google Scholar
  3. Crane, L. J.: 1974,Zeit. Appl. Math. Mech. 54, 567.Google Scholar
  4. Crane, L. J.: 1983,Zeit. Appl. Math. Mech. 69, 391.Google Scholar
  5. Derkach, P. Kh. and Derkach, A. P.: 1976,Prikladnaya Mekhanika 12, 98.Google Scholar
  6. Frater, K. R.: 1964,J. Fluid Mech. 20, 369.Google Scholar
  7. Goudas, C. L., Katsiaris, G. A., Drymonitou, M. A., and Vernardis, A. J.: 1982, in E. G. Mariolopoulos et al.. (eds.), ‘Numerical Treatment of the Magnetohydrodynamic Flow Bounded by an Infinite Porous Plate’,Compendium in Astronomy, D. Reidel Publ. Co., Dordrecht, Holland, p. 393.Google Scholar
  8. Klemp, J. B. and Acrivos, A.: 1972,J. Fluid Mech. 51, 337.Google Scholar
  9. Pande, G. C. and Hatzikonstantinou, P.: 1985,Astrophys. Space Sci. 113, 281.Google Scholar
  10. Richtmyer, R. D. and Morton, K. W.: 1967,Difference Methods of Initial-Value Problems, Interscience Publ. Co., New York, p. 16.Google Scholar
  11. Zapryanoy, Z.: 1977,Zeit. Appl. Math. Mech. 57, 41.Google Scholar

Copyright information

© D. Reidel Publishing Company 1985

Authors and Affiliations

  • P. Hatzikonstantinou
    • 1
  1. 1.Department of MechanicsUniversity of PatrasGreece

Personalised recommendations