Astrophysics and Space Science

, Volume 116, Issue 2, pp 377–387 | Cite as

Solution of the electron continuity equation in an inhomogeneous medium via the method of characteristics

  • I. J. D. Craig
  • A. L. Mackinnon
  • N. Vilmer


Many astrophysical problems require a knowledge of the spatial and temporal evolution of fast electron distributions as they interact (e.g., collisionally) with an ambient medium; an example is provided by hard X-ray burst modelling in solar flares. In the mean scattering-rate approximation (which neglects dispersion in the distribution function), this evolution is governed by the continuity equation in phase space. Here we present a rigorous solution of the continuity equation, derived via the method of characteristics, which confirms and generalises the results of previous authors, and gives greater physical and mathematical insight into these solutions. We illustrate the calculation of this solution for mildly relativistic electrons undergoing Coulomb collisions, and briefly indicate the extension of the method to other physical situations.


Flare Continuity Equation Solar Flare Relativistic Electron Fast Electron 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Bai, T.: 1982,Astrophys. J. 259, 341.Google Scholar
  2. Bai, T. and Ramaty, R.: 1979,Astrophys. J. 219, 705.Google Scholar
  3. Brown, J. C.: 1971,Solar Phys. 18, 489.Google Scholar
  4. Brown, J. C.: 1972,Solar Phys. 26, 441.Google Scholar
  5. Brown, J. C.: 1975, in S. R. Kane (ed.), ‘Solar X-, EUV-, and Gamma Radiation’,IAU Symp. 68, 439.Google Scholar
  6. Brown, J. C., Melrose, D. B., and Spicer, D. S.: 1979,Astrophys. J. 228, 592.Google Scholar
  7. Duijveman, A., Hoyng, P., and Machado, M. E.: 1982,Solar Phys. 81, 137.Google Scholar
  8. Emslie, A. G.: 1981,Astrophys. J. 245, 711.Google Scholar
  9. Emslie, A. G.: 1983,Astrophys. J. 271, 367.Google Scholar
  10. Giachetti, R. and Pallavicini, R.: 1976,Astron. Astrophys. 53, 347.Google Scholar
  11. Ince, F. L.: 1956,Ordinary Differential Equations, Dover, London.Google Scholar
  12. Kane, S. R., Anderson, K. A., Evans, W. D., Klebesadel, R. W., and Laros, J.: 1979,Astrophys. J. 233, L151.Google Scholar
  13. Kiplinger, A. L., Dennis, B. R., Emslie, A. G., Frost, K. J., and Orwig, L. E.: 1982,Astrophys. J. 265, L99.Google Scholar
  14. Leach, J. and Petrosian, V.: 1981,Astrophys. J. 251, 781.Google Scholar
  15. MacKinnon, A. L., Brown, J. C., Trottet, G., and Vilmer, N.: 1983,Astron. Astrophys. 119, 297.Google Scholar
  16. Melrose, D. B. and Brown, J. C.: 1976,Monthly Notices Roy. Astron. Soc. 176, 15.Google Scholar
  17. Smith, D. F. and Lilliequist, D. F.: 1979,Astrophys. J. 232, 582.Google Scholar
  18. Takakura, T. and Kai, K.: 1966,Publ. Astron. Soc. Japan 18, 57.Google Scholar
  19. Trubnikov, B. A.: 1965, in M. A. Leontovich (ed.),Reviews of Plasma Physics, Vol. 1, Consultants Bureau, New York.Google Scholar
  20. Vilmer, N., Kane, S. R., and Trottet, G.: 1982,Astron. Astrophys. 108, 306.Google Scholar
  21. Vilmer, N., Trottet, G., and MacKinnon, A. L.: 1985,Astron. Astrophys. (in press).Google Scholar
  22. Vlahos, L. and Papadopoulos, K.: 1979,Astrophys. J. 233, 717.Google Scholar

Copyright information

© D. Reidel Publishing Company 1985

Authors and Affiliations

  • I. J. D. Craig
    • 1
  • A. L. Mackinnon
    • 1
  • N. Vilmer
    • 2
  1. 1.Department of Astronomy, The UniversityGlasgowScotland
  2. 2.Observatoire de MeudonDASOPFrance

Personalised recommendations