Astrophysics and Space Science

, Volume 164, Issue 1, pp 153–166 | Cite as

Rotating magnetoviscous-fluid universes in general relativity

  • Koijam Maniharsingh
Article

Abstract

In the course of presentation of several new analytic solutions, the dynamics of slowly rotating magnetoviscous-fluid distribution is investigated. The nature and role of the rotational velocity Ω (r, t) which is related to the local dragging of inertial frames and that of matter rotation ω(r, t) are studied for uniform and non-uniform motions. It is observed that the magnetic field decays the rotational motion and this damping effect is found to be roughly analogous to viscosity. Rotating models which are expanding as well are obtained, which may be taken as good examples of real astrophysical situations; and their geometrical and physical properties are discussed in detail.

Keywords

Viscosity Magnetic Field General Relativity Rotational Motion Rotational Velocity 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Adams, R. C., Cohen, J. M., Adler, R. J., and Sheffield, C.: 1973,Phys. Rev. D8, 1651.Google Scholar
  2. Adams, R. C., Adler, R. J., Cohen, J. M., and Sheffield, C.: 1974,Astrophys. J. 192, 525.Google Scholar
  3. Bayin, S. S.: 1981,Phys. Rev. D 24, 2056.Google Scholar
  4. Bayin, S. S.: 1983,Phys. Rev. D 27, 3030.Google Scholar
  5. Bayin, S. S.: 1985a,Phys. Rev. D 32, 2241.Google Scholar
  6. Bayin, S. S.: 1985b,Can. J. Phys. 63, 1320.Google Scholar
  7. Bayin, S. S. and Cooperstock, F. I.: 1980,Phys. Rev. D 22, 2317.Google Scholar
  8. Bietenholz, M. F. and Kronberg, P. P.: 1984,Astrophys. J. 287, L1.Google Scholar
  9. Birch, P.: 1982,Nature 298, 451.Google Scholar
  10. Boyer, R. H.: 1965,Proc. Cambr. Phil. Soc. Math. Phys. Sci. 61, 527.Google Scholar
  11. Chandrasekhar, S. and Friedman, J. L.: 1972aAstrophys. J. 175, 379.Google Scholar
  12. Chandrasekhar, S. and Friedman, J. L.: 1972b,Astrophys. J. 176, 745.Google Scholar
  13. Chandrasekhar, S. and Friedman, J. L.: 1972c,Astrophys. J. 177, 745.Google Scholar
  14. Chandrasekhar, S. and Friedman, J. L.: 1973,Astrophys. J. 181, 481.Google Scholar
  15. Das, A., Florides, P. S., and Synge, J. L.: 1961,Proc. Roy. Soc. London A263, 451.Google Scholar
  16. Ellis, G. F. R.: 1967,J. Math. Phys. 8, 1171.Google Scholar
  17. Fennelly, A. J.: 1975, Ph.D. Thesis, Yeshiva University, New York.Google Scholar
  18. Florides, P. S. and Synge, J. L.: 1962,Proc. Roy. Soc. London A270, 467.Google Scholar
  19. Florides, P. S. and Synge, J. L.: 1964,Proc. Roy. Soc. London A280, 459.Google Scholar
  20. Gödel, K.: 1949,Rev. Mod. Phys. 21, 447.Google Scholar
  21. Gödel, K.: 1952,6th Proc. Int. Cong. Math. 1, 175.Google Scholar
  22. Hartle, J. B. and Sharp, D. H.: 1965,Phys. Rev. Letters 15, 909.Google Scholar
  23. Hartle, J. B. and Sharp, D. H.: 1967,Astrophys. J. 147, 317.Google Scholar
  24. Hawking, S.: 1969,Monthly Notices Roy. Astron. Soc. 142, 129.Google Scholar
  25. Islam, J. N.: 1985,Rotating Fields in General Relativity, Cambridge University Press, Cambridge.Google Scholar
  26. Kaminisi, K., Arai, K., and Tukamoto, M.: 1977,Phys. Rep. Kumamoto Univ. 3(i), 33.Google Scholar
  27. Kerr, R. P.: 1963,Phys. Rev. Letters 11, 237.Google Scholar
  28. Krori, K. D., Sarmah, J. C., and Goswami, D.: 1983,Can. J. Phys. 61, 744.Google Scholar
  29. Maitra, S. C.: 1966,J. Math. Phys. 7, 1025.Google Scholar
  30. Maniharsingh, K.: 1987,Astrophys. Space Sci. 139, 183.Google Scholar
  31. Maniharsingh, K.: 1988a,Astrophys. Space Sci. 143, 137.Google Scholar
  32. Maniharsingh, K.: 1988b,Astrophys. Space Sci. 148, 149.Google Scholar
  33. Maniharsingh, K.: 1989,Astrophys. Space Sci. (in press).Google Scholar
  34. Maniharsingh, K. and Bhamra, K. S.: 1986,Pramana-J. Phys. 26, 117.Google Scholar
  35. Silk, J. and Wright, J. P.: 1969,Monthly Notices Roy. Astron. Soc. 143, 55.Google Scholar
  36. Sisteró, R. F.: 1983,Astrophys. Letters 23, 235.Google Scholar
  37. Stewart, J. M. and Ellis, G. F. R.: 1968,J. Math. Phys. 9, 1072.Google Scholar
  38. Tiwari, R. N., Rao, J. R., Kanakamedala, R. R.: 1986,Phys. Rev. D34, 327.Google Scholar
  39. Van den Bergh, N. and Wils, P.: 1987, in W. B. Bonnor et al. (eds.), ‘Charged Rotating Dust in General Relativity’,Classical General Relativity, Cambridge University Press, Cambridge.Google Scholar
  40. Whitman, P. G.: 1982,Phys. Letters A89, 129.Google Scholar
  41. Whitman, P. G.: 1984,Class. Quantum Gravit. 1, 319.Google Scholar
  42. Whitman, P. G.: 1985,Phys. Rev. D32, 1857.Google Scholar
  43. Wright, J. P.: 1965,J. Math. Phys. 6, 103.Google Scholar

Copyright information

© Kluwer Academic Publishers 1990

Authors and Affiliations

  • Koijam Maniharsingh
    • 1
  1. 1.Department of MathematicsManipur UniversityImphalIndia

Personalised recommendations