Astrophysics and Space Science

, Volume 85, Issue 1–2, pp 3–15 | Cite as

Quasi-stellar objects as rotating magnetic superstars

I: Luminosity and density evolution
  • Wilfred H. Sorrell


In this paper the magnetic superstar model is used to discuss QSO luminosity and density evolution. Our main hypotheses are that (i) mass loss from old stars in massive galaxies cools and then falls into the centre to form a nuclear disc (Bailey, 1980); and (ii) magnetic superstars in galactic nuclei condense out of gaseous material at the centre of a supermassive-magnetised disc (Kundt, 1979). On this generalised model we find that the non-thermal (synchrotron) optical luminosity scales asLoptL3t−7/3, whereL is the total blue luminosity of old stars in the galaxy and t is cosmic time. In addition we show that QSO co-moving density follows the lawD(t)∝exp-(t/tEvol)16/15 with an evolution timescaletEvol = 1.95 × 109 yr. The model as a whole is in good agreement with observations.


Mass Loss Main Hypothesis Cosmic Time Density Evolution Massive Galaxy 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Bailey, M. E.: 1980,Monthly, Notices Roy. Astron. Soc. 191, 195.Google Scholar
  2. Bailey, M. E. and Clube, S. V. M.: 1978,Nature 275, 278.Google Scholar
  3. Bailey, M. E. and MacDonald, J.: 1981,Nature 289, 659.Google Scholar
  4. Cavaliere, A. and Morrison, P.: 1980,Astrophys. J. 238, L63.Google Scholar
  5. Faber, S. M. and Jackson, R. E.: 1976,Astrophys. J. 204, 668.Google Scholar
  6. Fricke, K. J.: 1974,Astrophys. J. 189, 535.Google Scholar
  7. Gisler, G. R.: 1976,Astron. Astrophys. 51, 137.Google Scholar
  8. Goldreich, P. and Lynden-Bell, D.: 1965,Monthly Notices Roy. Astron. Soc. 130, 125.Google Scholar
  9. Heiligman, G. M. and Turner, E. L.: 1980,Astrophys. J. 236, 745.Google Scholar
  10. Hills, J. G.: 1975,Nature 254, 295.Google Scholar
  11. King, I.: 1962,Astron. J. 67, 472.Google Scholar
  12. Kundt, W.: 1979,Astrophys. Space. Sci. 62, 335.Google Scholar
  13. Kundt, W.: 1981, private communication.Google Scholar
  14. Mathews, W. G. and Baker, J. C.: 1970,Astrophys. J. 170, 241.Google Scholar
  15. Mestel, L.: 1963,Monthly Notices Roy. Astron. Soc. 126, 553.Google Scholar
  16. Ozernoy, L. M. and Usov, V. V.: 1973,Astrophys, Space Sci. 15, 149.Google Scholar
  17. Piddington, J. H.: 1970,Monthly Notices Roy. Astron. Soc. 148, 131.Google Scholar
  18. Rees, M.: 1977,Ann. N.Y. Acad. Sci. 302, 613.Google Scholar
  19. Rees, M. and Ostriker, J. P.: 1977,Monthly Notices Roy. Astron. Soc. 179, 541.Google Scholar
  20. Richstone, D. and Schmidt, M.: 1980,Astrophys. J. 235, 361.Google Scholar
  21. Salpeter, E. E.: 1955,Astrophys. J. 121, 161.Google Scholar
  22. Sandage, A. R.: 1973,Astrophys. J. 198, 687.Google Scholar
  23. Sakimoto, P. J. and Coronitti, F. V.: 1981,Astrophys. J. 249, 19.Google Scholar
  24. Schechter, P. L.: 1976,Astrophys. J. 203, 297.Google Scholar
  25. Schmidt, M.: 1968,Astrophys. J. 151, 393.Google Scholar
  26. Sorrell, W. H.: 1981,Nature 291, 394.Google Scholar
  27. Thakur, R. K. and Mishra, P. K.: 1977,Astrophys. Space Sci. 51, 249.Google Scholar
  28. Thakur, R. K. and Sapre, A. K.: 1979,Astrophys. Space Sci. 64, 249.Google Scholar
  29. Turner, E. L.: 1979a,Astrophys. J. 230, 291.Google Scholar
  30. Turner, E. L.: 1979b,Astrophys. J. 231, 645.Google Scholar
  31. Wagoner, R. V., Fowler, W. A. and Hoyle, F.: 1967,Astrophys. J. 148, 3.Google Scholar
  32. Weedman, D. W.: 1977, inVistas in Astronomy 21, 55.Google Scholar

Copyright information

© D. Reidel Publishing Co 1982

Authors and Affiliations

  • Wilfred H. Sorrell
    • 1
  1. 1.MadisonUSA

Personalised recommendations