Astrophysics and Space Science

, Volume 165, Issue 2, pp 325–342 | Cite as

A theoretical model of Fanaroff-Riley I jets

II. Results of numerical calculations
  • S. S. Komissarov


A fluid model of the jets in Fanaroff-Raily I class extragalactic radio sources based on the idea that they are turbulent low Mach number supersonic flows consisting of relativistic and nonrelativistic plasma has been developed. Numerical calculations of steady jets whose physical parameters correspond to observational constraints on velocity, density, Mach number, spreading rate, relativistic particles pressure and power of FR-I jets are described. The properties of the jets, propagating through typical atmosphere of elliptical galaxy are studied. It is shown that, in spite of essential deceleration, the jets transport bulk motion kinetic energy almost without losses. The low densities of the jets thermal plasma (∼10−6cm−3) result in negligible Faraday rotation inside the jets. Mass fluxes along the jets may be used only to study the external gas entraiment but not the ‘discharge’ of central ‘prime mover’. The jets can be conventionally subdivided into a supersonic fast core providing the main energy transport and a transonic slow sheath providing the main mass transfer along the jets. Variations of radio brightness along the jets are estimated. it is concluded that an effective re-acceleration of relativistic electrons is required to explain the observed brightness distribution of FR-I jets. A correlation between the value of the radial pressure gradient in the X-ray atmosphere of the galaxy and the rate of jet darkening is expected.


Mach Number Radio Source Supersonic Flow Faraday Rotation Elliptical Galaxy 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Begelman, M. C., Blandford, R. D., and Rees, M. J.: 1984,Rev. Mod. Phys. 56, 1.Google Scholar
  2. Bicknell, G. V.: 1984,Astrophys. J. 286, 68.Google Scholar
  3. Bicknell, G. V.: 1986,Astrophys. J. 305, 109.Google Scholar
  4. Bicknell, G. V. and Melrose, D. B.: 1982,Astrophys. J. 262, 511.Google Scholar
  5. Blandford, R. D. and Rees, M. J.: 1974Monthly Notices Roy. Astron. Soc. 169, 395.Google Scholar
  6. Blandford, R. D. and Konigl, A.: 1979,Astrophys. Letters 20, 15.Google Scholar
  7. Bridle, A. H. and Perley, R. A.: 1984,Ann. Rev. Astron. Astrophys. 22, 319.Google Scholar
  8. Cornwell, T. J. and Perley, R. A.: 1984, in A. H. Bridle and J. A. Eilek (eds.),Proc. of NRAO Workshop No. 9, 39.Google Scholar
  9. Fanaroff, B. L. and Riley, J. M.: 1974,Monthly Notices Roy. Astron. Soc. 167, 31.Google Scholar
  10. Fanti, R., Lari, C., Parma, P., Bridle, A. H., Ekers, R. D., and Fomalont, E. B.: 1982,Astron. Astrphys. 110, 169.Google Scholar
  11. Hough, D. H., Bridle, A. H., Burns, J. O., and Laing, R. A.: 1988,Bull. Amer. Astron. Soc. 20(2), 261.Google Scholar
  12. Komissarov, S. S.: 1987. Preprint, No. 151, FIAN, Moscow.Google Scholar
  13. Komissarov, S. S.: 1988,Astrophys. Space Sci. 150, 59.Google Scholar
  14. Komissarov, S. S.: 1990,Astrophys. Space Sci. (Paper I) (submitted).Google Scholar
  15. Komissarov, S. S. and Ovchinnikov, I. L.: 1989,Soviet Astron. AJ 66, 966 (in Russian).Google Scholar
  16. O'Dea, C. P. and Owen, F. N.: 1986,Astrophys. J. 301, 841.Google Scholar
  17. Parma, P., Fanti, C., Fanti, R., Morganti, R., and de Ruiter, H. R.: 1987,Astron. Astrophys. 181, 244.Google Scholar
  18. Perley, R. A., Bridle, A. H., and Willis, A. G.: 1984,Astrophys. J. Suppl. Ser. 54, 291.Google Scholar

Copyright information

© Kluwer Academic Publishers 1990

Authors and Affiliations

  • S. S. Komissarov
    • 1
  1. 1.P. N. Lebedev Physical Institute of the Academy of Sciences of the USSRMoscowU.S.S.R.

Personalised recommendations