Skip to main content

The variation of Young's modulus and the hardness with tempering of some quenched chromium steels

Conclusions

  1. 1.

    After low-temperature tempering of high-alloy chromium steels Young's modulus begins to increase and then remains almost constant up to tempering temperatures of 525–550°C. The higher the chromium content of the steel, the smaller the initial increase and the longer the horizontal section of the curve.

  2. 2.

    On the hardness curves one observes a small peak at 150°C and then a drop of the hardness. At 450–500°C one observes another peak, which is the result of processes in the carbide phase.

  3. 3.

    After tempering at 525–550°C the hardness decreases and Young's modulus increases. Up to 700°C the increase of Young's modulus for steel 4Kh13 averages 6%, and 12% for steel 9Kh18.

  4. 4.

    The rapid increase of Young's modulus after tempering at 525°C and the simultaneous decrease of the hardness confirm the data in [14] indicating that the decisive factor in the retention of the high hardness of alloy steels up to high temperatures is the inhibition of the decomposition of the γ-solid solution and the increased temperature of relaxation processes that induce a reduction of lattice distortion.

This is a preview of subscription content, access via your institution.

Literature cited

  1. B. A. Apaev, Fiz. Metal. i Metalloved.,9, No. 3 (1960).

  2. S. S. D'yachenko, I. V. Vasis, and N. A. Kharchenko, Fiz. Metal. i Metalloved.,9, No. 3 (1960).

  3. V. N. Gridnev and Yu. N. Petrov, in: Problems of Physics of Metals and Metal Science [in Russian], Izd. AN UkrSSR, Kiev, No. 18 (1964).

    Google Scholar 

  4. J. Bowers and B. Met, AIM, J. Iron Steel Inst., No. 7 (1956).

  5. M. Ron, H. Shechter, A. Hirsch, and S. Niedewiedz, Physics Letters,20, No. 5 (1966).

  6. A. A. Bryukhanov, Ukrainsk. Fiz. Zh.,12, No. 8 (1967);11, No. 3 (1966).

  7. A. I. Medved', Ukrainsk. Fiz. Zh.,12, No. 3 (1967).

  8. A. A. Bryukhanov, V. V. Berezyuk, and A. E. Bryukhanov, Izv. Vuzov, Fizika, No. 5 (1966).

  9. M. V. Yakutovich, Zh. Tekh. Fiz.,1, No. 2, 3 (1931).

    Google Scholar 

  10. A. A. Bryukhanov, Ukrainsk. Fiz. Zh.,10, No. 1 (1965).

  11. N. N. Sirota, in: Transactions of the Steel Institute, Theory and Practice of Metallurgy [in Russian], Vol. 14 (1939).

  12. L. L. Lysak and A. G. Drachinskaya, in: Problems of Physics of Metals and Metal Science [in Russian], Izd. AN UkrSSR, Kiev, No. 18 (1964).

    Google Scholar 

  13. J. McGrath and R. Rawlings, Acta Met.,12, No. 8 (1964).

  14. G. V. Kurdyumov and M. D. Perkas, in: Transactions of the Central Scientific Research Institute of Ferrous Metallurgy, Problems of Metal Science and Physics of Metals [in Russian], Metallurgizdat, Moscow (1951).

    Google Scholar 

  15. M. D. Perkas, in: Problems of Metal Science and Physics of Metals [in Russian], Metallurgizdat, Moscow (1952).

    Google Scholar 

  16. G. V. Kurdyumov, in: Problems of Metal Science and Physics of Metals [in Russian], Metallurgizdat, Moscow (1952).

    Google Scholar 

  17. B. A. Apaev, Fiz. Metal. i Metalloved.,6, No. 3 (1958).

  18. V. G. Permyakov and M. V. Belous, Fiz. Metal. i Metalloved.,4, No. 4 (1957).

  19. J. Pomey, Compt. Rend.,238 (1954).

  20. Z. K. Kas'ko, Metal. i Term. Obrabotka Metal., No. 11 (1956).

Download references

Authors

Additional information

Odessa State University, Odessa Pedagogical Institute. Translated from Metallovedenie i Termicheskaya Obrabotka Metallov, No. 9, pp. 35–38, September, 1969.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Medved', A.I., Bryukhanov, A.E. The variation of Young's modulus and the hardness with tempering of some quenched chromium steels. Met Sci Heat Treat 11, 706–708 (1969). https://doi.org/10.1007/BF00653164

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00653164

Keywords