Skip to main content
Log in

Apparent molar heat capacities and volumes of electrolytes and ions int-butanol-water mixtures

  • Published:
Journal of Solution Chemistry Aims and scope Submit manuscript

Abstract

The apparent molar volumes Vϕ and heat capacities C p of NaCl, LiCl, NaF, KI, NaBPh4 and Ph4PCl have been determined in solutions of H2O containing up to 40 mass% t-butyl alcohol (TBA) by flow densitometry and flow microcalorimetry. Combination of these results with literature data allows calculation of Vϕ and C p for 16 ions in these mixtures using the assumption that ΔtXφ(Ph4P+) = ΔtXφ(BPh 4 ) where X=V or C p and ΔtXφ is the change in Xϕ for a species on transfer from H2O to TBA-H2O mixtures. These are the first reported single ion values for C p in a mixed solvent. While whole electrolyte volumes and heat capacities show relatively smooth changes with solvent composition, ΔtXφ(ion) exhibit two well-developed extrema at around 10 and 25 mass% TBA. The shape of the ΔtXφ(ion) curves shows considerable uniformity among the alkali metal cations and the halide ions but the extrema become more pronounced with increasing size among the tetraalkylammonium ions. These extrema are analogous to those observed in aqueous organic mixtures of surfactants and are probably indicative of microphase transitions in these strongly interacting solvent mixtures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. E. Desnoyers and C. Jolicoeur, inComprehensive Treatise of Electrochemistry, B. E. Conway, J. O. Bockris, and E. Yeager, eds., (Plenum, NY, 1983), Vol. 5, Chap. 1.

    Google Scholar 

  2. J. E. Desnoyers, G. Perron, and A. H. Roux, inSurfactant Solutions — New Methods of Investigation, R. Zana, ed., (Marcel Dekker, NY, 1987), Chap. 1.

    Google Scholar 

  3. J.-P. E. Grolier, G. Roux-Desgranges, and A. H. Roux,Fluid Phase Equil. 30, 157 (1986).

    Google Scholar 

  4. L. G. Hepler, Z. S. Kooner, G. Roux-Desgranges, and J.-P. E. Grolier,J. Solution Chem. 14, 579 (1985).

    Google Scholar 

  5. M. H. Abraham and Y. Marcus,J. Chem. Soc. Faraday Trans. I 82, 3255 (1986).

    Google Scholar 

  6. M. H. Abraham, Y. Marcus, and K. G. Lawrence,J. Chem. Soc. Faraday Trans. I,84, 175 (1988).

    Google Scholar 

  7. F. J. Millero,Chem. Rev. 71, 147 (1971).

    Google Scholar 

  8. R. Zana, J. E. Desnoyers, G. Perron, R. L. Kay, and K. S. Lee,J. Phys. Chem. 86, 3996 (1982) and references cited therein.

    Google Scholar 

  9. M. J. Mastroianni and C. M. Criss,J. Chem. Thermodyn. 4, 321 (1972).

    Google Scholar 

  10. A. J. Pasztor and C. M. Criss,J. Solution Chem. 7, 27 (1978).

    Google Scholar 

  11. R. Zana, G. Perron, and J. E. Desnoyers,J. Solution Chem. 8, 729 (1979).

    Google Scholar 

  12. Y. Marcus,Ion Solvation (Wiley, New York, 1985).

    Google Scholar 

  13. O. Popovych and R. Tomkins,Non Aqueous Solution Chemistry (Wiley-Interscience, New York, 1981).

    Google Scholar 

  14. L. Avedikian, G. Perron, and J. E. Desnoyers,J. Solution Chem. 4, 331 (1975).

    Google Scholar 

  15. F. Franks and J. E. Desnoyers,Water Sci. Rev. 1, 171 (1985).

    Google Scholar 

  16. E. Wilhelm, J.-P. E. Grolier, and M. H. Karbalai Ghassemi,Ber. Bunsenges Phys. Chem. 81, 925 (1977).

    Google Scholar 

  17. J.-P. E. Grolier, E. Wilhelm, and M. H. Hamedi,Ber. Bunsenges Phys. Chem. 82, 1282 (1978).

    Google Scholar 

  18. J. E. Desnoyers, O. Kiyohara, G. Perron, and L. Avedikian,Adv. Chem. Ser. 155, 274 (1976).

    Google Scholar 

  19. A. H. Roux, D. Hétu, G. Perron, and J. E. Desnoyers,J. Solution Chem. 13, 1 (1984).

    Google Scholar 

  20. J. E. Desnoyers, G. Caron, R. De Lisi, D. Roberts, A. Roux, and G. Perron,J. Phys. Chem. 87, 1397 (1983).

    Google Scholar 

  21. R. N. French and C. M. Criss,J. Solution Chem. 11, 625 (1982).

    Google Scholar 

  22. V. Gutmann,The Donor-Acceptor Approach to Molecular Interactions (Plenum, New York, 1978).

    Google Scholar 

  23. B. E. Conway,Ionic Hydration in Chemistry and Biophysics (Elsevier, Amsterdam, 1981).

    Google Scholar 

  24. K. Bose, A. K. Das, and K. K. Kundu,J. Chem. Soc. Faraday Trans. I 71 1838 (1975).

    Google Scholar 

  25. C. F. Wells,J. Chem. Soc. Faraday Trans. I 72, 601 (1976).

    Google Scholar 

  26. J. E. Desnoyers, G. Perron, L. Avedikian, and J.-P. Morel,J. Solution Chem. 5, 631 (1976).

    Google Scholar 

  27. L. G. Hepler,J. Phys. Chem. 61, 1426 (1957).

    Google Scholar 

  28. F. Kawaizumi and R. Zana,J. Phys. Chem. 78, 1099 (1974).

    Google Scholar 

  29. U. Mayer, inIons and Molecules in Solution, N. Tanaka, H. Ohtaki, R. Tamamushi, eds., (Elsevier, Amsterdam, 1982), p. 219.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hefter, G.T., Grolier, J.P.E. & Roux, A.H. Apparent molar heat capacities and volumes of electrolytes and ions int-butanol-water mixtures. J Solution Chem 18, 229–248 (1989). https://doi.org/10.1007/BF00652986

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00652986

Key words

Navigation