Colloid and Polymer Science

, Volume 271, Issue 9, pp 901–908 | Cite as

Permeabilization and morphological changes in phosphatidylglycerol bilayers induced by an antimicrobial peptide, tachyplesin I

  • K. Matsuzaki
  • M. Fukui
  • N. Fujii
  • K. Miyajima
Original Contributions

Abstract

Tachyplesin I, a broad-spectrum antimicrobial peptide fromTachypleus tridentatus has a basic (+7), amphiphilic, and cyclic β-sheet structure. We reported (Matsuzaki K. et al. (1991) Biochim. Biophys. Acta 1070:259–264) that 1) the action mechanism of tachyplesin I may be the permeabilization of bacterial membranes, 2) the peptide specifically permeabilizes acidic phospholipid bilayers, and 3) its Trp2 residue is located in the hydrophobic region near the surface of the bilayers. In this paper, we found that tachyplesin I dose-dependently induces not only the permeabilization but also aggregation/fusion and micellization of the phosphatidylglycerol large unilamellar vesicles (100 nm in diameter) either in the gel (L-α-dipalmitoylphosphatidyl-DL-glycerol (DPPG)) or liquid-crystalline (egg yolk L-α-phosphatidyl-DL-glycerol (egg PG)) phase, as revealed by light scattering and electron micrograph techniques. The solid DPPG vesicles were more susceptible to the peptide. At peptide to lipid molar ratios (P/L) of 1/500 to 1/200, interpeptide interactions formed a pore through which calcein, a fluorescent dye, can leak out of the vesicles. The pore lifetime was longer in the DPPG vesicles. Further addition of the peptide caused aggregation and/or fusion of the vesicles. At a charge-neutralizingP/L ratio of 1/7, the enlarged vesicles disintegrated into small spherical particles (10–20 nm in diameter). The mechanism for these morphological changes will be discussed.

Key words

Tachyplesin I lipid membrane permeability aggregation fusion micellization 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Dufourcq J, Faucon J-F, Fourche G, Dasseux J-L, Maire ML, Gulik-Krzywicki T (1986) Biochim Biophys Acta 859:33–48Google Scholar
  2. 2.
    Dufourc EJ, Smith ICP, Dufourcq J (1986) Biochemistry 25:6448–6455Google Scholar
  3. 3.
    Morgan CG, Williamson H, Fuller S, Hudson B (1983) Biochim Biophys Acta 732:668–674Google Scholar
  4. 4.
    Batenburg AM, Hibbeln JCL, Verkleij AJ, De Kruijff B (1987) Biochim Biophys Acta 903:142–154Google Scholar
  5. 5.
    Zidovetzki R, Banerjee U, Harrington W, Chan SI (1988) Biochemistry 27:5686–5692Google Scholar
  6. 6.
    Pache W, Chapman D, Hillby R (1972) Biochim Biophys Acta 255:358–364Google Scholar
  7. 7.
    Eytan G D, Broza R, Shalitin Y (1988) Biochim Biophys Acta 937:387–397Google Scholar
  8. 8.
    Kubesch P, Boggs J, Luciano L, Maass G, Tümmler B (1987) Biochemistry 26:2139–2149Google Scholar
  9. 9.
    Dufourc EJ, Dufourcq J, Birkbeck TH, Freer JH (1990) Eur J Biochem 187:581–587Google Scholar
  10. 10.
    Epand RM, Gawish A, Iqbal M, Gupta KB, Chen CH, Segrest JP, Anantharamaiah GM (1987) J Biol Chem 262:9389–9396Google Scholar
  11. 11.
    Akaji K, Fujii N, Tokunaga F, Miyata T, Iwanaga S, Yajima H (1989) Chem Pharm Bull 37:2661–2664Google Scholar
  12. 12.
    Nakamura T, Furunaka H, Miyata T, Tokunaga F, Muta T, Iwanaga S (1988) J Biol Chem 263:16709–16713Google Scholar
  13. 13.
    Miyata T, Tokunaga F, Yoneya T, Yoshikawa K, Iwanaga S, Niwa M, Takano T, Shimonishi Y (1989) J Biochem 106:663–668Google Scholar
  14. 14.
    Kawano K, Yoneya T, Miyata T, Yoshikawa K, Tokunaga F, Terada Y, Iwanaga S (1990) J Biol Chem 265:15365–15367Google Scholar
  15. 15.
    Kawano K, Yoneya T, Miyata T, Yoshikawa K, Tokunaga F, Terada Y, Iwanaga S (1991) In: Shimonishi Y (ed) Peptide chemistry 1990. Protein Research Foundation, Osaka, pp 385–388Google Scholar
  16. 16.
    Matsuzaki K, Fukui M, Fujii N, Miyajima K (1991) Biochim Biophys Acta 1070:259–264Google Scholar
  17. 17.
    Hope MJ, Bally MB, Webb G, Cullis PR (1985) Biochim Biophys Acta 812:55–65Google Scholar
  18. 18.
    Matsuzaki K, Takaishi Y, Fujita T, Miyajima K (1991) Colloid Polym Sci 269:604–611Google Scholar
  19. 19.
    Bartlett GR (1959) J Biol Chem 234:466–468Google Scholar
  20. 20.
    Allen TM, Cleland LG (1980) Biochim Biophys Acta 597:418–426Google Scholar
  21. 21.
    Johonson SM, Bangham AD, Hill MW, Korn ED (1971) Biochim Biophys Acta 233:820–826Google Scholar
  22. 22.
    Matsuzaki K, Nakai S, Handa T, Takaishi Y, Fujita T, Miyajima K (1989) Biochemistry 28:9392–9398Google Scholar
  23. 23.
    Schwarz G, Robert CH (1990) Biophys J 58:577–583Google Scholar
  24. 24.
    Gregoriadis G (ed) (1984) Liposome technology, Vol 3. CRC Press Inc, Florida, pp 193–195Google Scholar
  25. 25.
    Stacey KA (1956) Light-scattering in physical chemistry. Butterworths Scientific Publications, London, chapter 2Google Scholar
  26. 26.
    Struck DK, Hoekstra D, Pagano RE (1981) Biochemistry 20:4093–4099Google Scholar
  27. 27.
    Nagawa Y, Regan SL (1991) Membrane Symposium 3:80–83Google Scholar
  28. 28.
    Ohki S (1988) In: Ohki S, Doyle D, Flangan TD, Hui SW, Mayhew E (eds) Molecular mechanisms of membrane fusion. Plenum Press, New York, pp 123–138Google Scholar
  29. 29.
    Walter A, Steer CJ, Blumenthal R (1986) Biochem Biophys Acta 861:319–330Google Scholar
  30. 30.
    Lafleur M, Samson I, Pézdet M (1991) Chem Phys Lipids 59:233–244Google Scholar

Copyright information

© Steinkopff-Verlag 1993

Authors and Affiliations

  • K. Matsuzaki
    • 1
  • M. Fukui
    • 1
  • N. Fujii
    • 1
  • K. Miyajima
    • 1
  1. 1.Faculty of Pharmaceutical SciencesKyoto UniversityKyotoJapan

Personalised recommendations