Advertisement

Colloid and Polymer Science

, Volume 271, Issue 9, pp 860–867 | Cite as

Effect of electrolyte type on the electrokinetic behavior of sulfonated polystyrene model colloids

  • D. Bastos
  • F. J. de las Nieves
Original Contributions

Abstract

Sulfonated polystyrene latex particles were prepared by a two-stage “shot-growth” emulsion polymerization process in the absence of emulsifier. Sodium styrene sulfonate (NaSS) was used as an ionic co-monomer to produce a series of latex particles with the same particle size but with different surface charge densities. The electrophoretic mobility of this functionalized model colloid was studied in the presence of various types of inorganic electrolytes. The μe curves of these latexes exhibit a pronounced maximum at high electrolyte concentrations: 5·10−2 M for 1∶1 electrolytes and 10−2 M for 2∶1 and 1∶2 electrolytes. When a 3∶1 electrolyte (LaCl3) was used, the electrophoretic mobility changed to positive values at high concentration due to the specific adsorption of lanthanum species. The experimental results for the electrokinetic characterization of these sulfonated polystyrene model colloids suggest that the surface of the particles is covered by a layer of oligomers or polymer chains which shift the shear plane toward the bulk solution, increasing the anomalous surface conductance of the polystyrene microsphere-electrolyte solution interface.

Key words

Sulfonated polystyrene latexes electrophoretic mobility 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Ottewill RH, Shaw JN (1967) Kolloid z z Polym 218:34Google Scholar
  2. 2.
    Kotera A, Furusawa K, Takeda Y (1970) Kolloid z z Polym 239:677Google Scholar
  3. 3.
    Furusawa K, Norde W, Lyklema J (1972) Kolloid z z Polym 250:908Google Scholar
  4. 4.
    Bijsterbosch BH (1978) Colloid Polym Sci 256:343Google Scholar
  5. 5.
    Goodwin JW, Hearn J, Ho CC, Ottewill RH (1973) Br Polym J 5:347Google Scholar
  6. 6.
    Brouwer WM, Zsom RLJ (1987) Colloids Surfaces 24:195Google Scholar
  7. 7.
    Tamai H, Niino K, Suzawa T (1989) J Colloid Interface Sci 131:1Google Scholar
  8. 8.
    Kim JH, Chainey M El-Aasser MS, Vanderhoff JW (1989) J Polym Sci, Polym Chem Ed 27:3187Google Scholar
  9. 9.
    Tsaur SL, Fitch RM (1987) J Colloid Interface Sci 115:450Google Scholar
  10. 10.
    Graillat C, Pichot C, Guyot A (1991) Colloids Surfaces 56:189Google Scholar
  11. 11.
    de las Nieves FJ, Daniels ES, El-Aasser MS (1991) Colloids Surfaces 60:107Google Scholar
  12. 12.
    Zukoski CF, Saville DA (1985) J Colloid Interface Sci 107:322Google Scholar
  13. 13.
    Van der Put AG, Bijsterbosch BH (1983) J Colloid Interface Sci 92:499Google Scholar
  14. 14.
    Elimelech M, O'Melia CR (1990) Colloids Surfaces 44:165Google Scholar
  15. 15.
    Van Streun KH, Belt WJ, Piet P, German AL (1991) Eur Polym J 27:931Google Scholar
  16. 16.
    Hunter RJ (1981) In: Ottewill RH, Rowel RL (eds) Zeta-Potential in Colloid Science. Academic Press, New YorkGoogle Scholar
  17. 17.
    Midmore BR, Hunter RJ (1988) J Colloid Interface Sci 122:521Google Scholar
  18. 18.
    Baran AA, Dukhina LM, Soboleva NM, Chechik OS (1981) Kolloid z 43:211Google Scholar
  19. 19.
    Chow RS, Takamura K (1988) J Colloid Interface Sci 125:226Google Scholar
  20. 20.
    Twigt F, Piet P, German AL (1991) Eur Polym J 27:939Google Scholar
  21. 21.
    Moleón-Baca JA, Rubio-Hernández FJ, de las Nieves FJ, Hidalgo-Alvarez R (1991) J Non-Equil Thermodyn 16:187Google Scholar
  22. 22.
    Galisteo F, de las Nieves FJ, Cabrerizo M, Hidalgo-Alvarez R (1990) Progr Colloid Polym Sci 82:313Google Scholar
  23. 23.
    Hidalgo-Alvarez R, Moleón-Baca JA, de las Nieves FJ, Bijsterbosch BH (1992) J Colloid Interface Sci 149:23Google Scholar
  24. 24.
    Ottewill RH, Shaw JN (1968) J Colloid Interface Sci 26:110Google Scholar

Copyright information

© Steinkopff-Verlag 1993

Authors and Affiliations

  • D. Bastos
    • 1
  • F. J. de las Nieves
    • 1
  1. 1.Biocolloids and Fluid Physics Group, Department of Applied Physics, Faculty of SciencesUniversity of GranadaGranadaSpain

Personalised recommendations