Skip to main content
Log in

Renal sodium handling in intact and renal denervated dogs

  • Transport Processes, Metalolism and Endocrinology; Kidney, Gastrointestinal Tract, and Exocrine Glands
  • Published:
Pflügers Archiv Aims and scope Submit manuscript

Abstract

The ability to retain sodium was investigated in six conscious dogs before and after surgical renal denervation.

  1. 1.

    Dietary sodium and water intake were kept constant (2.5 mmol Na·kg−1 bw·day−1 and 91 ml water·kg−1 bw·day−1). Balance experiments were performed from 6 days before to 8 days after having produced a sodium deficit of 6.4±0.4 (intact dogs) and 5.8±0.2 (renal denervated dogs) mmol Na·kg−1 bw by means of a peritoneal dialysis (PD). Having the same sodium excretion before PD, intact and renal denervated dogs demonstrated a similar striking decrease of sodium excretion and a similar increase of plasma renin activity after PD until the amount of sodium lost had been replenished (4th day after PD). In intact and renal denervated dogs plasma sodium concentration (PNa) decreased and renal water excretion increased on the first day after PD, indicating a homeostatic response to the fall of PNa.

  2. 2.

    After dietary sodium restriction (from 2.5 to 0.5 mmol Na·kg−1·day−1) a similar striking decrease of renal sodium excretion occurred in intact and renal denervated dogs.

It therefore is concluded that in conscious dogs the presence of the renal nerves is not essential in order to maintain body sodium homeostasis after an acute sodium loss or after dietary sodium restriction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Atack CV, Magnusson T (1970) Individual elution of noradrenaline (together with adrenaline), dopamine, 5-hydroxytryptamine and histamine from a single, strong cation exchange column, by means of mineral acid-organic solvent mixtures. J Pharm Pharmacol 22:625–627

    Google Scholar 

  • Barajas L (1978) Innervation of the renal cortex. Fed Proc 37:1192–1201

    Google Scholar 

  • Behrenbeck DW, Dörge A, Reinhardt HW (1968) Untersuchungen an wachen Hunden über die Einstellung der Natriumbilanz. III. Elektrolytbilanzen und Natriumrejection nach akutem Natriumentzug durch Peritonealdialyse oder wiederholter Mannitolinfusion. Pflügers Arch 300:226–243

    Google Scholar 

  • Bencsath P, Fekete MI, Kanyicska B, Szenasi G, Takacs L (1982) Renal excretion of sodium after bilateral renal sympathectomy in the anaesthetized and conscious rat. J Physiol 331:443–450

    Google Scholar 

  • Berne RM (1952) Hemodynamics and sodium excretion of denervated kidney in anesthetized and unanesthetized dog. Am J Physiol 171:148–158

    Google Scholar 

  • DiBona GF (1977) Neurogenic regulation of renal tubular sodium reabsorption. Am J Physiol 233:F73-F81

    Google Scholar 

  • DiBona GF (1982) The functions of the renal nerves. Rev Physiol Biochem Pharmacol 94:75–181

    Google Scholar 

  • DiBona GF, Sawin LL (1983) Renal nerves in renal adaptation to dietary sodium restriction. Am J Physiol 245:F322-F328

    Google Scholar 

  • DiBona GF, Sawin LL (1985) Renal nerve activity in conscious rats during volume expansion and depletion. Am J Physiol 248:F15-F23

    Google Scholar 

  • Fernandez-Repollet E, Silva-Netto CR, Colindres RE, Gottschalk CW (1985) Role of renal nerves in maintaining sodium balance in unrestrained conscious rats. Am J Physiol 249:F819-F826

    Google Scholar 

  • Gordon D, Peart WS, Wilcox CS (1979) Requirement of the adrenergic nervous system for conservation of sodium by the rabbit kidney. J Physiol 293:24P

    Google Scholar 

  • Gotshall RW, Davis JO, Shade RE, Spielman W, Johnson JA, Braverman B (1973) Effects of renal denervation of renin release in sodium-depleted dogs. Am J Physiol 225:344–349

    Google Scholar 

  • Gregory LC, Reid A (1984) Effect of renal denervation on the suppression of renin secretion by vasopressin in conscious dogs. Am J Physiol 247:F881-F887

    Google Scholar 

  • Gross R, Kirchheim H, Ruffmann K (1981) Effect of carotid occlusion and of perfusion pressure on renal function in conscious dogs. Circ Res 48:777–784

    Google Scholar 

  • Haber E, Koerner T, Page LB, Kliman B, Purnode A (1969) Application of a radioimmunoassay for angiotensin I to the physiologic measurements of plasma renin activity in normal human subjects. J Clin Endocrinol 29:1349–1355

    Google Scholar 

  • Kaczmarczyk G, Echt M, Mohnhaupt R, Simgen B, Reinhardt HW (1980) Postprandial volume regulation and renin-angiotensin-system in conscious dogs. In: Takacs L (ed) Kidney and body fluids. Adv Physiol Sci, vol 11. Pėrgamon Press, pp 611–620

  • Mizelle HL, Woods LL, Montani JP, Hall JE (1985) Role of renal nerves in adaptation to chronic sodium deprivation. Fed Proc 44:3509

    Google Scholar 

  • Reinhardt HW, Behrenbeck DW (1967) Untersuchungen an wachen Hunden über die Einstellung der Natriumbilanz. I. Die Bedeutung des Extracellulärraumes für die Einstellung der Natrium-Tagesbilanz. Pflügers Arch 295:266–279

    Google Scholar 

  • Reinhardt HW, Kaczmarczyk G, Mohnhaupt R, Simgen B, Wegener S (1980) Is the control of sodium excretion partly due to signals from receptors located in the left atrium of the heart. In: F Obal, G Benedek (eds) Environmental physiology. Adv Physiol Sci, vol. 18. Pergamon Press, pp 67–75

  • Schneider E, McLane-Vega L, Hanson R, Childers J, Gleason S (1978) Effect of chronic bilateral renal denervation on daily sodium excretion in the conscious dog. Fed Proc 37:645

    Google Scholar 

  • Sadowski J, Portalska E (1982) Denervated and intact kidney responses to norepinephrine infusion in conscious dogs. J Aut Nerv Syst 6:373–379

    Google Scholar 

  • Slick GL, Aguilera AJ, Zambraski EJ, DiBona GF, Kaloyanides GJ (1975) Renal noradrenergic transmission. Am J Physiol 229:60–65

    Google Scholar 

  • Szenasi G, Bencsath P, Takacs L (1985) Proximal tubular transport and urinary excretion of sodium after renal denervation in sodium depleted rats. Pflügers Arch 403:146–150

    Google Scholar 

  • Swerdel JN, Osborn JL (1985) Transient renal excretory responses to elevated sodium chloride intake of conscious rats. Fed Proc 44:3510

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kaczmarczyk, G., Mohnhaupt, R. & Reinhardt, H.W. Renal sodium handling in intact and renal denervated dogs. Pflugers Arch. 407, 382–387 (1986). https://doi.org/10.1007/BF00652622

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00652622

Key words

Navigation