Skip to main content
Log in

Kirkwood-Buff integrals and density fluctuations in aqueous solution of caffeine

  • Published:
Journal of Solution Chemistry Aims and scope Submit manuscript

Abstract

The Kirkwood-Buff theory is applied to caffeine aqueous solution. The integrals of radial distribution functions are calculated from the osmotic coefficient, density and sound velocity data at 25°C. The results are discussed in terms of density fluctuations of two components and the correlation between them. It is found that the concentration dependence of Kirkwood-Buff integrals reflects the association tendency of caffeine and its strong influence on the properties of the solvent.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. G. Kirkwood and F. P. Buff,J. Chem. Phys. 19, 774 (1951).

    Google Scholar 

  2. A. Ben-Naim, Water and Aqueous Solutions. Introduction to a Molecular Theory (Plenum, New York, 1974).

    Google Scholar 

  3. A. Ben-Naim,J. Chem. Phys. 67, 4884 (1977).

    Google Scholar 

  4. A. Ben-Naim, Hydrophobic Interactions (Plenum, New York, 1980).

    Google Scholar 

  5. M. C. A. Donkersloot,J. Solution Chem. 8, 293 (1979).

    Google Scholar 

  6. K. J. Patil,J. Solution Chem. 10, 315 (1981).

    Google Scholar 

  7. T. Kato,J. Phys. Chem 88, 1248 (1984).

    Google Scholar 

  8. E. Matteoli and L. Lepori,J. Chem. Phys. 80, 2856 (1984).

    Google Scholar 

  9. T. Kato, T. Fujiyama, and H. Nomura,Bull. Chem. Soc. Jap. 55, 3368 (1982).

    Google Scholar 

  10. J. H. Stern and L. R. Beeninga,J. Phys. Chem. 79, 582 (1975).

    Google Scholar 

  11. A. Cesaro, E. Russo, and V. Crescenzi,J. Phys. Chem. 80, 335 (1976).

    Google Scholar 

  12. K. Ramaswamy and D. Anbananthan,Acustica 51, 190 (1982).

    Google Scholar 

  13. H. Hoiland, A. Skauge, and I. Stokkeland,J. Phys. Chem. 88, 6350 (1984).

    Google Scholar 

  14. P. O. P. Ts'o, in Molecular Associations in Biology, B. Pullman, ed. (Academic Press, New York, 1968).

    Google Scholar 

  15. K. J. Neurohr and H. H. Mantsch,Can. J. Chem. 57, 1986 (1979).

    Google Scholar 

  16. S. J. Chan, M. P. Schwiezer, P. O. P. Ts'o, and G. K. Helmkamp,J. Am. Chem. Soc. 86, 4182 (1964).

    Google Scholar 

  17. M. Greenspan and C. E. Tschiegg,Rev Sci. Instrum. 28, 11, 897 (1957).

    Google Scholar 

  18. M. P. Heyn, C. U. Nicola, and G. Schwarz,J. Phys. Chem. 81, 1611 (1977).

    Google Scholar 

  19. J. Langlet, C. Giesner-Prettre, B. Pullman, P. Claverie, and D. Piazzola,Int. J. Quant. Chem. 18, 421 (1980).

    Google Scholar 

  20. D. Eisenberg and W. Kauzmann, The Structure and Properties of Water (Oxford University Press, New York, 1969).

    Google Scholar 

  21. R. Lumry, E. Battistel and C. Jolicoeur,Faraday Symp. Chem. Soc. 17, 93 (1982).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Žółkiewski, M. Kirkwood-Buff integrals and density fluctuations in aqueous solution of caffeine. J Solution Chem 16, 1025–1034 (1987). https://doi.org/10.1007/BF00652586

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00652586

Key words

Navigation