Journal of Solution Chemistry

, Volume 19, Issue 12, pp 1155–1173 | Cite as

Electrolyte mixing thermodynamics to probe ion-ion interactions

  • Hua Xu
  • Harold L. Friedman
Article

Abstract

In their study of solvent-averaged ion-ion pair potentials, Pettitt and Rossky show that, at least for the given underlying Born-Oppenheimer level model, there is a remarkable well in the potential of the solventaveraged Cl−Cl interaction in water; it has a minimum below-kT and near 3.6Å, the Pauling diameter for the Cl ion. As Pettitt and Rossky also showed, the osmotic coefficient of aqueus NaCl solution as a function of ionic strength ϕ(I) could be insensitive to this remarkable feature, even when the well implies that there is a substantial concentration of dimers at 1M or higher stoichiometric concentration. Here it is argued that the thermodynamics of mixtures of aqueous NaCl with, say, aqueous NaClO4, should be sensitive to the presence of the well in the Cl−Cl interaction. Accordingly we apply the HNC approximation to calculate the mixing coefficients that characterize the excess free energy functions of several model aqueous NaCl−NaClO4 mixed electrolyte solutions. For reference we use a model (V6) in which all six ion-ion pair potentials have the simple ‘vanilla’ form: charged soft spheres supplemented by a dielectric image correction and an adjustable Gurney term that represents an interaction of the solvation structures about the ions. The six Gurney coefficients were adjusted to tune the model ϕ(I) close to the experimental for pure NaCl, pure NaClO4, and an equimolar mixture, all in the range 0.1≤I≤2M. We find that the V6 model gives mixing coefficients that agree closely with experiment. The calculations were also made for five models that incorporate, in varying degrees, the Pettitt-Rossky pair potentials. Comparison of the mixing coefficients for these models with the experimental data leads to the conclusion that the Cl, Cl well is unrealistic, although a shallower well in the same place might be acceptable.

Key words

Mixed electrolyte solution ion-ion interaction solvent averaged potentials osmotic coefficients activity coefficients Harned's rule HNC approximation 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    H. L. Friedman,J. Chem. Phys. 32, 1134 (1960).Google Scholar
  2. 2.
    G. Stell and J. Høye,Faraday Disc. Chemical Soc. 64, 8 (1977).Google Scholar
  3. 3.
    B. M. Pettitt and P. J. Rossky,J. Chem. Phys. 84, 5836 (1986).Google Scholar
  4. 4.
    L. X. Dang and B. M. Pettitt,J. Chem. Phys. 86, 6560 (1987).Google Scholar
  5. 5.
    R. A. Kuharski and G. N. Patey,Mol. Phys. 65, 1105 (1988).Google Scholar
  6. 6.
    H. L. Friedman,Ionic Solution Theory (Wiley-Interscience, New York, 1962).Google Scholar
  7. 7.
    M. C. R. Symons,Faraday Disc. Chem. Soc. 64, 173 (1977).Google Scholar
  8. 8.
    G. Brink and M. Falk,Can. J. Chem. 48, 3019 (1970).Google Scholar
  9. 9.
    M. Eisenstadt and H. L. Friedman,J. Chem. Phys. 46, 2182 (1967).Google Scholar
  10. 10.
    H. S. Frank and M. Evans,J. Chem. Phys. 13, 507 (1945).Google Scholar
  11. 11.
    H. L. Friedman,A Course in Statistical Mechanics (Prentice Hall, New York. 1985).Google Scholar
  12. 12.
    K. S. Pitzer,Activity Coefficients in Electrolyte Solutions, Vol. I, R. M. Pytkowicz, ed., (CRC Press Inc, Boca Raton, Florida, 1979).Google Scholar
  13. 13.
    J. G. Kirkwood and F. P. Buff,J. Chem. Phys. 17, 338 (1949);19, 774 (1951).Google Scholar
  14. 14.
    H. L. Friedman,Faraday Disc. Chem. Soc. 85, 1 (1988).Google Scholar
  15. 15.
    H. L. Friedman, F. O. Raineri, and M. D. Wood,Chemica Scripta 29a, 49 (1989).Google Scholar
  16. 16.
    E. C. Zhong and H. L. Friedman,J. Phys. Chem. 92, 1685 (1988).Google Scholar
  17. 17.
    H. L. Friedman, F. O. Raineri, and H. Xu,Pure and Applied Chem. (in press).Google Scholar
  18. 18.
    H. Schoenert,Ber. Bunsensges. Phys. Chem. (submitted); private communication prior to publication is gratefully acknowledged.Google Scholar
  19. 19.
    H. L. Friedman,J. Solution Chem. 9, 525 (1980).Google Scholar
  20. 20.
    H. S. Harned and B. B. Owen,The Physical Chemistry of Electrolyte Solution, 3rd edn., (Reinhold Publishing Corporation, New York, 1958); R. A. Robinson and R. H. Stokes,Electrolyte Solution, 2nd edn., (Butterworths Scientific Publications, 1959).Google Scholar
  21. 21.
    K. S. Pitzer, and J. J. Kim,J. Am. Chem. Soc. 96, 5701 (1974).Google Scholar
  22. 22.
    T. K. Lim, E. C. Zhong, and H. L. Friedman,J. Phys. Chem. 90, 144 (1986).Google Scholar
  23. 23.
    R. D. Lainer,J. Phys. Chem. 69, 3992 (1965).Google Scholar
  24. 24.
    C. J. Downes,J. Chem. Eng. Data 15, 444 (1970).Google Scholar
  25. 25.
    H. L. Friedman,J. Solution Chem. 1, 387 (1972).Google Scholar
  26. 26.
    P. S. Ramanathan and H. L. Friedman,J. Chem. Phys. 54, 1086 (1971).Google Scholar
  27. 27.
    P. J. Rossky, J. B. Dudowics, B. L. Tembe, and H. L. Friedman,J. Chem. Phys. 73, 3372 (1980).Google Scholar
  28. 28.
    M. D. Wood and H. L. Friedman,Zeits. Physik. Chem. 155, 121 (1987).Google Scholar
  29. 29.
    D. N. Card and J. P. Valleau,J. Chem. Phys. 52, 6232 (1970).Google Scholar
  30. 30.
    H. L. Friedman and P. S. Ramanathan,J. Phys. Chem. 74, 3756 (1970).Google Scholar
  31. 31.
    D. J. Rossky, and W. D. T. Dale,J. Chem. Phys. 73, 2457 (1980).Google Scholar
  32. 32.
    W. L. Jorgensen,J. Am. Chem. Soc. 106, 903 (1984).Google Scholar
  33. 33.
    Y. C. Wu, W. F. Koch, E. C. Zhong, and H. L. Friedman,J. Chem. Phys. 90, 1693 (1988).Google Scholar
  34. 34.
    A. R. Altenberger and H. L. Friedman,J. Chem. Phys. 78, 4162 (1983).Google Scholar
  35. 35.
    P. S. Ramanathan, C. V. Krishnan, and H. L. Friedman,J. Solution Chem. 1, 237 (1972).Google Scholar

Copyright information

© Plenum Publishing Corporation 1990

Authors and Affiliations

  • Hua Xu
    • 1
  • Harold L. Friedman
    • 1
  1. 1.Department of ChemistryState University of New YorkStony Brook

Personalised recommendations