Skip to main content
Log in

Bose fluid in restricted geometry: High-energy neutron scattering

  • Published:
Journal of Low Temperature Physics Aims and scope Submit manuscript

Abstract

The existence is discussed of a low temperature phase with “infinite susceptibility” in a Bose fluid in two dimensions and in thin films. In particular the high temperature approach to the relative phase transition is considered by a second-order theory based on the use of finite temperature Green functions. It is shown that the small momenta singularity of the momentum distribution present in the low temperature phase gives an anomalous contribution to the high-energy neutron scattering and its temperature dependence is very similar to the one expected in the case of scattering by a system with Bose-Einstein condensation and to the experimental data on bulk liquid4 He. It is suggested that4He in a porous medium with an appropriate statistical distribution of pore size has an intermediate phase, characterized by an “infinite susceptibility,” between the high temperature normal phase and the low temperature phase with Bose-Einstein condensation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. P. C. Hohenberg,Phys. Rev. 158, 383 (1967).

    Google Scholar 

  2. D. Jasnow and M. E. Fisher,Phys. Rev. Letters 23, 286 (1969).

    Google Scholar 

  3. L. Reatto,Phys. Letters 26A, 400 (1968).

    Google Scholar 

  4. L. Reatto and G. V. Chester,Phys. Rev. 155, 88 (1967), hereafter referred to as (RC).

    Google Scholar 

  5. H. E. Stanley and T. A. Kaplan,Phys. Rev. Letters 17, 913 (1966); H. E. Stanley,Phys. Rev. Letters 20, 589 (1968); M. A. Moore,Phys. Rev. Letters 23, 861 (1969).

    Google Scholar 

  6. V. G. Laks and A. I. Larkin,Zh. Eksperim. i. Teor. Fiz. 49, 975 (1965) [English transl.:Soviet Phys.—JETP 22, 678 (1966)].

    Google Scholar 

  7. R. B. Griffiths,Phys. Rev. Letters 23, 17 (1969).

    Google Scholar 

  8. B. M. McCoy,Phys. Rev. Letters 23, 383 (1969).

    Google Scholar 

  9. P. C. Hohenberg and P. M. Platzman,Phys. Rev. 152, 198 (1966).

    Google Scholar 

  10. R. A. Cowley and A. D. B. Woods,Phys. Rev. Letters 21, 787 (1968).

    Google Scholar 

  11. D. F. Brewer,Proc. 10th Intern. Conf. Low Temp. Physics (VINITI), Moscow, 1967, Vol. I, p. 145.

  12. O. Penrose and L. Onsager,Phys. Rev. 104, 576 (1956).

    Google Scholar 

  13. M. D. Girardeau,J. Math. Phys. 6, 1083 (1965).

    Google Scholar 

  14. P. C. Hohenberg and P. C. Martin,Ann. Phys. 34, 291 (1965).

    Google Scholar 

  15. M. Girardeau,J. Math. Phys. 1, 516 (1960).

    Google Scholar 

  16. A. Lenard,J. Math. Phys. 5, 930 (1964).

    Google Scholar 

  17. G. V. Chester,Phys. Rev. (to be published).

  18. D. F. Brewer, G. W. Lepplemeier, C. C. Lim, D. O. Edwards, and J. Landau,Phys. Rev. Letters 19, 491 (1967); I. Rudmick, E. Guyon, K. A. Shapiro, and S. A. Scott,Phys. Rev. Letters 19, 488 (1967).

    Google Scholar 

  19. A. Miller, D. Pines, and P. Nozières,Phys. Rev. 127, 474 (1962).

    Google Scholar 

  20. A. A. Abrikosov, L. P. Gorkov, and I. Ye. Dzyaloshinskii,Quantum Field Theoretical Methods in Statistical Physics (Pergamon Press, London, 1965).

    Google Scholar 

  21. M. Abramowitz and I. A. Stegun,Handbook of Mathematical Functions (Dover, New York, 1965).

    Google Scholar 

  22. R. A. Ferrell, N. Menyhard, H. Schmidt, F. Schawbl, and P. Szepfalusy,Ann. Phys. (New York)47, 565 (1968).

    Google Scholar 

  23. R. S. Kagiwada, J. C. Fraser, I. Rudmick, and D. Bergman,Phys. Rev. Letters 22, 338 (1969).

    Google Scholar 

  24. R. P. Henkel, G. Kukichi, and J. D. Reppy inProc. 11th Intern. Conf. Low Temp. Phys., J. F. Allen, D. M. Finlayson, and D. M. McCall, eds. (St. Andrews, 1968), Vol. I, p. 178.

  25. G. V. Chester, W. P. Francis, and L. Reatto,Phys. Rev. A1, 86 (1970).

    Google Scholar 

  26. L. McMillan,Phys. Rev. 138, A442 (1965).

    Google Scholar 

  27. F. H. Ree and W. G. Hoover,J. Chem. Phys. 46, 4181 (1967).

    Google Scholar 

  28. L. Reatto and J. P. Straley,Phys. Rev. 183, 321 (1969).

    Google Scholar 

  29. N. N. Bogoliubov,J. Phys. USSR 11, 23 (1947).

    Google Scholar 

  30. N. Shohno,Progr. Theoret. Phys. 31, 553 (1964).

    Google Scholar 

  31. G. Baym and L. P. Kadanoff,Phys. Rev. 124, 287 (1961).

    Google Scholar 

  32. M. Luban,Phys. Rev. 128, 965 (1962).

    Google Scholar 

  33. C. J. Pethick and D. ter Haar,Phys. Letters 19, 20 (1965).

    Google Scholar 

  34. A. Z. Patashinskii and V. L. Pokrovskii,Zh. Eksperim. i Teor. Fiz. 46, 994 (1964) [English transl.:Soviet Phys.—JETP 19, 677 (1964)].

    Google Scholar 

  35. A. A. Migdal,Zh. Eksperim. i Teor. Fiz. 55, 1964 (1968) [English transl.:Soviet Phys.—JETP 28, 1036 (1969)].

    Google Scholar 

  36. V. K. Wong (Ph.D. Thesis, University of California, Berkeley, unpublished).

  37. I. S. Gradshteyn and I. M. Ryzhik,Table of Integrals, Series and Products (Academic Press, New York and London, 1965).

    Google Scholar 

  38. M. E. Fisher,Rep. Progr. Phys. 30, 615 (1967).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Reatto, L. Bose fluid in restricted geometry: High-energy neutron scattering. J Low Temp Phys 2, 353–370 (1970). https://doi.org/10.1007/BF00652507

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00652507

Keywords

Navigation