Colloid and Polymer Science

, Volume 274, Issue 5, pp 446–452 | Cite as

Numerical and approximate studies on the theoretical dielectric relaxation of colloidal suspensions in the time domain

  • F. Carrique
  • A. V. Delgado
Original Contribution

Abstract

In this work we show numerical calculations on the dielectric behavior of colloidal suspensions in the time domain. The theory elaborated by DeLacey and White ((1981) J Chem Soc Faraday Trans 2 77:2007–2039) for dilute suspensions in the frequency domain, will be the basis for the present study. The different contributions, and their relative importance, to the transient current density generated in the suspensions after the application of a step electric field, are calculated from the dielectric response function associated to the DeLacey and White's model. In particular, we analyze the conduction and absorption current densities in the transient states upon changing the concentration of the supporting electrolyte in the suspension. With the aim of characterizing the response of the suspension for short times, an approximation to the distribution function of relaxation times that best fits the dielectric model, is calculated. Finally, an exhaustive analysis of the behavior of the dielectric response function is carried out, together with a comparison with other models in the time domain.

Key words

Dielectric relaxation dielectric response function colloidal suspensions standard electrokinetic model 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Springer MM (1979) Ph D Thesis. Wageningen University, The Netherlands, pp 49–61Google Scholar
  2. 2.
    Schwarz GJ (1962) J Phys Chem 66:2636–2642Google Scholar
  3. 3.
    Schurr JM (1964) J Phys Chem 68:2407–2413Google Scholar
  4. 4.
    Dukhin S, Shilov VN (1974) Dielectric Phenomena and the Double Layer in Disperse Systems and Polyelectrolytes. Wiley, New York, pp 42–52Google Scholar
  5. 5.
    DeLacey EH, White LR (1981) J Chem Soc Faraday Trans 2 77:2007–2039Google Scholar
  6. 6.
    Fixman M (1980) J Chem Phys 72:5177–5186Google Scholar
  7. 7.
    O'Brien RW (1982) Adv in Colloid and Interface Sci 16:281–320Google Scholar
  8. 8.
    Fixman M (1983) J Chem Phys 78:1483–1491Google Scholar
  9. 9.
    Chew WC (1984) J Chem Phys 80:4541–4552Google Scholar
  10. 10.
    Vogel E, Pauly H (1988) J Chem Phys 89:3823–3829Google Scholar
  11. 11.
    Böttcher CJF, Bordewijk P (1978) Theory of Electric Polarization, Vol II. Elsevier, Amsterdam, pp 3–67Google Scholar
  12. 12.
    Carrique F, Criado C, Delgado AV (1993) J Colloid Interface Sci 156:117–120Google Scholar
  13. 13.
    Lim KH, Franses EI (1986) J Colloid Interface Sci 110:201–211Google Scholar
  14. 14.
    Carrique F, Quirantes A, Delgado AV (1995) Colloids and Surfaces A: Physicochemical Eng Aspects 97:141–149Google Scholar
  15. 15.
    Jonscher AK (1983) Dielectric Relaxation in Solids. Chelsea Dielectric Group, London, pp 36–45, 282–289Google Scholar
  16. 16.
    Carrique F (1993) Ph D Thesis. Granada University, Spain, pp 208–225Google Scholar
  17. 17.
    Carrique F, Delgado AV (1993) Progress in Colloid & Polymer Science 93:193–200Google Scholar
  18. 18.
    Jonscher AK (1983) Dielectric Relaxation in Solids. Chelsea Dielectric Group, London, ch. 8Google Scholar
  19. 19.
    Carrique F, Zurita L, Delgado AV (1994) Colloids and Surfaces A: Physicochemical Eng Aspects 92:9–21Google Scholar
  20. 20.
    Dunstan DE (1993) J Chem Soc Faraday Trans 3 89:521–526Google Scholar
  21. 21.
    Rosen LA, Baygents JC, Saville DA (1993) J Chem Phys 98:4183–4194Google Scholar
  22. 22.
    Kijlstra J, Van Leewen HP, Lyklema J (1992) J Chem Soc Faraday Trans 88:3441–3449Google Scholar

Copyright information

© Steinkopff Verlag 1996

Authors and Affiliations

  • F. Carrique
    • 1
  • A. V. Delgado
    • 2
  1. 1.Departamento de Fisica Aplicada 1 Facultad de CienciasUniversidad de MálagaMálagaSpain
  2. 2.Departamento de Fisica Aplicada Facultad de CienciasUniversidad de GranadaGranadaSpain

Personalised recommendations