Colloid and Polymer Science

, Volume 271, Issue 1, pp 1–10 | Cite as

Phase equilibria in polymer/solvent systems. Part V: Thermodynamic theory of the swelling pressure equilibrium of a crosslinked substance with a solvent in various phases

  • W. Borchard
Leading Contribution


A thermodynamic theory has been developed to define the swelling pressure equilibrium between a homogeneous gel and a pure solvent, where phase transitions of the solvent, such as evaporation and crystallization can occur. It is shown that the equilibrium curve, which describes the temperature dependence of the composition in the gel phase under the condition of a constant swelling pressure, has distinct bends at the transition temperatures. These bends are related to the enthalpies of transition of the pure solvent at the transition temperatures. As a consequence of the phase transition of the solvent the swelling pressure-temperature curve at constant composition of the gel shows a discontinuous behavior at the transition point. Numerical calculations with a modified Flory-Huggins expression, based on results of swelling and deswelling measurements of the system crosslinked PEG/water, are presented.

The discussion includes natural systems, which are in the gel state, where water may crystallize in the extracellular space.

Key words

Swelling pressure equilibrium phase transitions of the solvent water biophysics 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Riecke E (1894) Wied Ann 53:564Google Scholar
  2. 2.
    Borchard W, Steinbrecht U (1991) Colloid Polym Sci 269:95Google Scholar
  3. 3.
    Jenckel E, Cossmann G (1952) Kolloid-Z 127:83Google Scholar
  4. 4.
    Hladik B (1992) Diplomarbeit, Uni-GH-DuisburgGoogle Scholar
  5. 5.
    Borchard W, Hladik B (in preparation)Google Scholar
  6. 6.
    Borchard W (submitted for publication)Google Scholar
  7. 7.
    Posnjak E, Freundlich H (1912) Koll Chem Beihefr 3:417Google Scholar
  8. 8.
    Prins WJ, Pennings AJ, (1961) Polymer Science 49:507Google Scholar
  9. 9.
    Borchard W (1966) Dissertation, AachenGoogle Scholar
  10. 10.
    Borchard W, Emberger A, Schwarz J (1978) Die Angewandte Makromolekular Chemie 66, Nr. 986:43Google Scholar
  11. 11.
    Rehage G (1964) Kolloid-Z u Z Polymere 194:16Google Scholar
  12. 12.
    Borchard W (1975) Progr Colloid Polym Sci 57:39Google Scholar
  13. 13.
    Svedberg T, Pederson KO (1940) Die Ultrazentrifuge. Steinkopff, DresdenGoogle Scholar
  14. 14.
    Johnson P (1971) J Photograph Sci 16:82Google Scholar
  15. 15.
    Johnson P (1970) Velocity and equilibrium aspects of sedimentation of agar gels in Photographic Gelatin I. Academic Press, London: 13Google Scholar
  16. 16.
    Richard AJ (1983) Biopolymers 22(3):935Google Scholar
  17. 17.
    Richard AJ (1984) Biopolymers 23(7):1307Google Scholar
  18. 18.
    Richard AJ, Westkaemper RB (1986) Biopolymers 25(10):1333Google Scholar
  19. 19.
    Borchard W (1991) Progr Colloid Polym Sci 86:84Google Scholar
  20. 20.
    Holtus G, Cölfen H, Borchard W (1991) Progr Colloid Polym Sci 86:92Google Scholar
  21. 21.
    Flory PJ (1942) J Chem Phys 10:51Google Scholar
  22. 22.
    Huggins ML (1943) Ann NY Acad Sci 44:431Google Scholar
  23. 23.
    Dusek K, Prins W (1968) Adv Polym Sci 6:58Google Scholar
  24. 24.
    Graessley WW (1975) Macromolecules 8:186, 865Google Scholar
  25. 25.
    Stavermann AJ (1982) Properties of Phantom Networks and Real Networks in Dušek K (1982) Polymer Networks. Springer Berlin-Heidelberg-New York, 44:73Google Scholar
  26. 26.
    Candau S, Bastide J, Delsanti M (1982) Structural Elastic and Dynamic Properties of Swollen Polymer Networks in Dušek K (1982) Polymer Networks Springer Berlin-Heidelberg-New York 27Google Scholar
  27. 27.
    Kilian HG, Schenk H, Wolff S (1987) Colloid Polym Sci 265 Nr. 5:410Google Scholar
  28. 28.
    Petrović ZS, Mac Knight WJ, Koningsveld R, Dušek K (1987) Macromolecules 20:1088Google Scholar
  29. 29.
    Borchard W (1975) Habilitationsschrift, ClausthalGoogle Scholar
  30. 30.
    Haase R (1956) Thermodynamik der Mischphasen. Springer Verlag Berlin-Göttingen-HeidelbergGoogle Scholar
  31. 31.
    Borchard W (1977) Ber der Bunsen Gesellschaft für Phys Chem 81(10):989Google Scholar
  32. 32.
    Steinbrecht U (1991) Dissertation. DuisburgGoogle Scholar

Copyright information

© Steinkopff-Verlag 1993

Authors and Affiliations

  • W. Borchard
    • 1
  1. 1.Angewandte Physikalische Chemie der Universität-GH-DuisburgDuisburg 1FRG

Personalised recommendations