Metal Science and Heat Treatment

, Volume 11, Issue 8, pp 668–672 | Cite as

Recrystallization of heterophase alloys

  • V. Yu. Novikov
From Foreign Technology


  1. 1.

    A dispersed second phase changes the recrystallization process in alloys, the distance between the particles being the controlling factor.

  2. 2.

    Large particles with relatively large distances between them accelerate the formation of recrystallization nuclei, causing an uneven distribution of dislocations in the deformed material and creating dislocation sinks during annealing.

  3. 3.

    Dispersed precipitates with small (<1–2 μ) distances between particles slow down recrystallization and permit retention of a considerably larger portion of cold hardening during heating to high temperatures.

  4. 4.

    Fine particles of second phase existing in the metal before deformation slow down the formation of a cellular structure during deformation, broadening the cell walls, and leading to cells with small misorientation. This inhibits the formation of subgrains and their growth during annealing.

  5. 5.

    Particles of second phase existing in the subgrain boundaries slow down their growth and retard the formation of recrystallization nuclei.

  6. 6.

    Coalescence or solution of particles of second phase can induce accelerated growth of subgrains, formation of recrystallization nuclei and subsequent softening, with slow recovery in the deformed matrix.

  7. 7.

    Coherent precipitates of second phase slow down recrystallization, inhibiting the rearrangement of dislocations and the movement of the boundaries of growing grains.

  8. 8.

    Segregates in the boundaries of deformed grains and subgrains formed during annealing of deformed supersaturated solid solutions also slow down recrystallization. In this case the recrystallization texture also changes as the result of the difference in the holding of subgrain boundaries with different orientations.



Solid Solution Recrystallization Large Particle Fine Particle Large Distance 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literature cited

  1. 1.
    W. Leslie, J. Michalak, and F. Aul, Iron and Its Dilute Solid Solutions, Interscience (1963).Google Scholar
  2. 2.
    S. S. Gorelik, Recrystallization of Metals and Alloys, Metallurgiya, Moscow (1967).Google Scholar
  3. 3.
    R. Rickett and W. Leslie, Trans. Am. Soc. Metals,51 (1959).Google Scholar
  4. 4.
    M. von Heimendaht and G. Thomas, Trans. AIME,230, No. 7 (1964).Google Scholar
  5. 5.
    G. Fiorito and W. Schüle, J. Nucl. Mater.,22, No. 1 (1967).Google Scholar
  6. 6.
    D. Dew-Hughes and W. Robertson, Acta Met.,8, No. 2 (1960).Google Scholar
  7. 7.
    F. Haessner, E. Hornbogen, and M. Mukherjee, Z. Metallk.,57, No. 3 (1966).Google Scholar
  8. 8.
    M. Klein and R. Huggins, Acta Met.,10, No. 1 (1962).Google Scholar
  9. 9.
    F. Hamphreys and J. Martin, Acta Met.,14, No. 6 (1966).Google Scholar
  10. 10.
    V. Phillips, Trans. AIME,236, No. 9 (1966).Google Scholar
  11. 11.
    J. Brimhall and R. Huggins, Trans. AIME,233, No. 6 (1965).Google Scholar
  12. 12.
    K. Gschwendtner and F. Haessner, Z. Metallk.,56, No. 8 (1965).Google Scholar
  13. 13.
    W. Truber and C. McHargue, Trans. AIME,218, No. 1 (1960).Google Scholar
  14. 14.
    R. Doherty and J. Martin, J. Inst. Metals,91, No. 10 (1962–63).Google Scholar
  15. 15.
    R. Doherty and J. Martin, Trans. Am. Soc. Metals,57 (1964).Google Scholar
  16. 16.
    K. V. Gorev, L. T. Tovpenets, and L. T. Mendeleev, Metal Science and Heat Treatment of Metals [in Russian], Minsk (1965).Google Scholar
  17. 17.
    K. Detert and J. Ziebs, Trans. AIME,233, No. 1 (1965).Google Scholar
  18. 18.
    R. Doherty and J. Martin, Electron Microscopy, Vol. A, Prague (1964).Google Scholar
  19. 19.
    J. Brimhall, M. Klein, and R. Huggins, Acta Met.,14, No. 4 (1966).Google Scholar
  20. 20.
    J. Baird and J. Arrowsmith, J. Iron Steel Inst.,204, No. 3 (1966).Google Scholar
  21. 21.
    I. Gokyu, H. Abe, and N. Ueyama, Nippon Kindzoku Gakkai Shi (J. Japan. Inst. Metals),29, No. 5 (1965).Google Scholar
  22. 22.
    W. Leslie, J. Michalak, A. Koh, and R. Sober, Trans. Am. Soc. Metals,58 (1965).Google Scholar
  23. 23.
    A. F. Polesya and V. M. Passal'skii, Fiz. Metal. i Metalloved.,26, No. 1 (1968).Google Scholar
  24. 24.
    F. Haessner, E. Hornbogen, and M. Mukherjee, Z. Metallk.,57, No. 4 (1966).Google Scholar
  25. 25.
    A. Chakraborty and E. Hornbogen, Z. Metallk.,58, No. 1 (1967).Google Scholar
  26. 26.
    S. S. Gorelik and É. L. Reznitskii, Izv. Vuzov. Chernaya Metallurgiya, No. 1 (1967).Google Scholar
  27. 27.
    C. Stickels, Trans. AIME,236, No. 9 (1966).Google Scholar
  28. 28.
    W. Jolley, J. Iron Steel Inst.,205, No. 3 (1967).Google Scholar
  29. 29.
    R. Richards, J. Austr. Inst. Metals,12, No. 1 (1967).Google Scholar
  30. 30.
    R. Richards and M. Ormay, J. Austr. Inst. Metals,12, No. 1 (1967).Google Scholar
  31. 31.
    I. Dillamore, C. Smith, and T. Watson, Mater. Sci. J.,1, No. 2 (1967).Google Scholar

Copyright information

© Consultants Bureau 1970

Authors and Affiliations

  • V. Yu. Novikov

There are no affiliations available

Personalised recommendations